[1]
GU Yin, LIU Jing-bo, DU Yi-xin. 3D consistent viscous-spring artificial boundary and viscous-spring boundary element[J] Engineering Mechanics, 2007, 24(12): 31-38(in chinese).
Google Scholar
[2]
Lysmer J, Kuhlemeyer RL. Finite dynamic model for infinite media[J]. J Engng Mech Div ASCE, 1969, 95: 759-877.
DOI: 10.1061/jmcea3.0001144
Google Scholar
[3]
Y.Y. Jiao, X.L. Zhang, J. Zhao, Q.S. Liu. Viscous boundary of DDA for modeling stress wave propagation in jointed rock[J] International Journal of Rock Mechanics & Mining Sciences, 2007, 44: 1070-1076.
DOI: 10.1016/j.ijrmms.2007.03.001
Google Scholar
[4]
LIU Jingbo, WANG Zhen-yu, DU Xiu-li. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J] Engineering Mechanics, 2005, 22(6): 46-51(in chinese).
Google Scholar
[5]
Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, ASCE, 1994, 120(1): 25-42.
DOI: 10.1061/(asce)0733-9399(1994)120:1(25)
Google Scholar
[6]
WANG Zhen-yu , Computational theory of dynamic response of large structure-soil systems and its application[D]. Beijing: Tsinghua University; 2002: 24-28. (in chinese).
Google Scholar
[7]
Zhang Chuhan, PanJianwen, WangJinting. Influence of seismic input mechanisms and radiation damping on arch dam response[J] Soil Dynamics and Earthquake Engineering 2009, 29: 1282-1293.
DOI: 10.1016/j.soildyn.2009.03.003
Google Scholar
[8]
LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J] Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075(in chinese).
Google Scholar
[9]
Clayton R, B Engquist. Absorbing boundary condition for wave-equation migration[J] Geophysics, 1980, 45: 895-904.
DOI: 10.1190/1.1441094
Google Scholar
[10]
Clayton R, B Engquist. Absorbing boundary condition for acoustic and elastic wave equations[J] Bull. Seism. Soc. Am, 1977, 67: 1529-1540.
DOI: 10.1785/bssa0670061529
Google Scholar
[11]
Higdon R L. Absorbing Boundary Condition for Acoustic and elastic waves in stratified media[J] Comp. Phys., 1992, 101: 386-418.
DOI: 10.1016/0021-9991(92)90016-r
Google Scholar
[12]
S.V. Tsynkov. Artificial boundary conditions for the numerical simulation of unsteady acoustic waves[J]. Journal of Computational Physics , 2003, 189: 626-650.
DOI: 10.1016/s0021-9991(03)00249-3
Google Scholar
[13]
Chongbin Zhao, Tianyun Liu. Non-reflecting artificial boundaries for modeling scalar wave propagation problems in two-dimensional half space[J]. Comput. Methods Appl. Mech. Engrg. 2002, 191: 4569-4585.
DOI: 10.1016/s0045-7825(02)00370-5
Google Scholar
[14]
Smith W.A. Non-reflecting plane boundary for wave propagation problems[J]. J Comp Phys, 1973, 15: 492-503.
Google Scholar
[15]
GadiFibich, Semyon Tsynkov. High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering[J] Journal of Computational Physics, 2001, 171, 632-677.
DOI: 10.1006/jcph.2001.6800
Google Scholar
[16]
Song C, Wolf JP. The scaled boundary finite element method alias consistent infinitesimal finite element cell method for elasto-dynamics[J]. Computer methods in applied mechanics and engineering, 1997, 147(3-4): 329-355.
DOI: 10.1016/s0045-7825(97)00021-2
Google Scholar
[17]
Z.P. Liao, H.L. Wong, B. Yang, Y. Yuan, A transmitting boundary for transient wave analysis[J] Sci. Sinica, 1984, 27: 1063-1073.
Google Scholar
[18]
Liao Z P, Liu J B. Numerical instabilities of a local transmitting boundary[J]. Earthq Eng Struct Dyn, 1992, 21: 65-77.
DOI: 10.1002/eqe.4290210105
Google Scholar