Chaotic Behavior of the Nonlinear (3+1)-Dimensional Burgers System

Article Preview

Abstract:

Based on the non-traveling wave solution and Rossler chaos system, chaotic soliton excitations are established for the nonlinear (3+1)-dimensional burgers system. The chaotic behavior and chaotic evolution of the system are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

774-779

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Y. Lou, J. Yu, X.Y. Tang, New exact solutions and special soliton structures for the (3+1)-dimensional Burgers system, Acta Phys. Sin. Vol. 57(2008), pp.11-1417.

Google Scholar

[2] M.L. Wang, X.Z. Li, J.L. Zhang, The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A Vol. 372(2008), pp.417-423.

DOI: 10.1016/j.physleta.2007.07.051

Google Scholar

[3] M.L. Wang, J.L. Zhang, X.Z. Li, Application of the (G'/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations, Appl. Math. Comput. Vol. 206(2008), pp.321-326.

DOI: 10.1016/j.amc.2008.08.045

Google Scholar

[4] L.X. Li, M.L. L.X. Li, M.L. Wang, The (G'/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrodinger equation, Appl. Math. Comput. Vol. 208(2009), pp.440-445.

Google Scholar

[5] Ismail Aslan, Turgut Ozisb, Analytic study on two nonlinear evolution equations by using the (G'/G)-expansion method, Appl. Math. Comput. 209(2009), pp.425-429.

DOI: 10.1016/j.amc.2008.12.064

Google Scholar

[6] Y.B. Zhou, C. Li, Application of Modified G'/G-Expansion Method to Traveling Wave Solutions for Whitham-Broer-Kaup-Like Equations, Commun. Theor. Phys. (Beijing) 51(2009) pp.664-670.

DOI: 10.1088/0253-6102/51/4/17

Google Scholar

[7] B.Q. Li, Y.L. Ma, (G'/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system, Acta Phys. Sin. 58(2009), pp.4373-4378.

DOI: 10.7498/aps.58.4373

Google Scholar

[8] Y.L. Ma, B.Q. Li, J.Z. Sun, New application of (G'/G)-expansion method for high dimensional nonlinear physical equations, Acta Phys. Sin. Vol. 58(2009), pp.7402-7408.

Google Scholar

[9] B.Q. Li, Y.L. Ma, M.P. Xu, (G'/G)-expansion method and novel fractal structure for high-dimensional nonlinear physical equation, Acta Phys. Sin. Vol. 59(2010), pp.1409-1415.

Google Scholar

[10] B.Q. Li, Y.L. Ma, Exact solutions for coupled mKdV equations by a new symbolic computation method, Appl. Mech. Mater. Vol. 20-23(2010), pp.184-189.

DOI: 10.4028/www.scientific.net/amm.20-23.184

Google Scholar

[11] B.Q. Li, M.P. Xu, Y.L. Ma, New exact solutions of (2+1)-dimensional generalization of shallow water wave equation by (G'/G)-expansion method, Appl. Mech. Mater. Vol. 20-23(2010), pp.1516-1521.

DOI: 10.4028/www.scientific.net/amm.20-23.1516

Google Scholar