Effects of Lattice and Thermal Mismatch Induced by Different Seed Layers on (Na0.8K0.2)0.5Bi0.5TiO3 Ferroelectric Thin Film

Article Preview

Abstract:

(Na0.8K0.2)0.5Bi0.5TiO3 (NKBT20) lead free environmental protection thin films were deposited on Si(100), Pt/Ti/SiO2/Si(100), LaNiO3/SiO2/Si(100) and SrTiO3(STO)/Pt/Ti/SiO2/Si(100) by metal organic decomposition, and the effects of mismatch induced by different seed layers on microstructures, leakage current density, ferroelectric and dielectric properties of these thin films were investigated in detail. The NKBT20/STO thin film with single perovskite phase is of the largest grain size, dielectric constant, remnant polarization and the smallest leakage current density. This could be attributed to the fact that the optimum seed layers can lower the lattice and thermal mismatch between the seed layers and the thin film. The improved electric properties may make NKBT20/STO thin film a promising candidate in micro-electro-mechanical system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2636-2640

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Moon J W, Tazawa S, Wakiya N, et al. Solid. State. Phenom. 124 (2007), p.153.

Google Scholar

[2] Smolenskii G A, Isupov V A, Agranovskaya A I, et al. Sov. Phys . Solid. State. 2(11) (1961), p.2651.

Google Scholar

[3] Chiang Y M, Farrey G W. Appl. Phys. Lett. 73(25) (1998) , p.3683.

Google Scholar

[4] Sasaki T C, MamiyaY, Otsuki E. Jpn. J. Appl. Phys. 38 (1999) , p.5564.

Google Scholar

[5] Zheng X J, Dai S H, Feng X, et al. Appl. Surf. Sci. 256(10) (2010) , p.3316.

Google Scholar

[6] Kang G Q, Yao K, Wang J. J. Am. Ceram. Soc. 94(5) (2011) , p.1331.

Google Scholar

[7] Grundmann M. Phys. Status Solidi B. 248 (2011) , p.805.

Google Scholar

[8] Dong H, Zheng X J, Li W, et al. J. Appl. Phys. 110(12) (2011) , p.124109.

Google Scholar

[9] Schwartz R W. Chem. Mater. 9(11) (1997) , p.2325.

Google Scholar

[10] LB Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge U. Press, 2003).

Google Scholar

[11] Gong Y Q, DONG H, Zheng X J, et al. J. Phys. D Appl. Phys. 45 (2012) , p.305301.

Google Scholar

[12] Joshi P C, Desu S B. J. Appl. Phys. 80(4) (1996) , p.2349.

Google Scholar

[13] Gong Y Q, Zheng X J, Gong L J, et al. Trans. Nonferrous Met. Soc. 20(10) (2010) , p.1906.

Google Scholar

[14] Kim J M , Yoon D S , No K. J. Mater. Sci. 29(24) (1994) , p.6599.

Google Scholar

[15] Xu J, Liu H X, Hao H, et al. Phys. Status Solidi B. 249 (2012) , p.1452.

Google Scholar

[16] Li J F, Takagi K, Ono M, et al. J. Am. Ceram. Soc. 86(7) (2003) , p.1094.

Google Scholar

[17] Taylor T R, Hansen P J, Acikel B et al. Appl. Phys. Lett. 80 (2002) , p.1978.

Google Scholar

[18] Hwang H S, Kang B, Kim B H, et al. Surf & Coat Tech. 190 (2005) , p.331.

Google Scholar