The Effect of Substrate Temperatures on CdS Film Prepared by Thermal Evaporation

Article Preview

Abstract:

A suitable deposition method of CdS is necessary for the high performance CIGS(Cu(In0.7Ga0.3)Se2.2) solar cells. In this paper, CdS films were deposited onto glass substrates at the substrate temperture of 50°C、100°C、150°C by thermal evaporation, the effect of the temperature were presented. CdS film deposited at substrate temperture of 150°C was annealed at 150°C for 30min. All films were characterized for their morphology, structure and optical property using scanning electron microscope(SEM), X-ray diffractometer(XRD) and UV–VIS–IR transmittance respectively.The quantum efficiency of the fabricated solar cells with annealed CdS buffer layer was also enhanced at short wavelength. This new method leads to the improved performance of CIGS solar cells and also simplify the whole fabrication technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-37

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tenne R, Nabutovsky VM, Lifshitz E and Francis AF. Solid State Commun, 1992, 82: 651.

Google Scholar

[2] Ruxandra V and Antohe S. J Appl Phys, 1998, 84: 727~731.

Google Scholar

[3] Su B and Choy KL. Thin solid Films, 2000, 361: 102~106.

Google Scholar

[4] Valyomana AG, Vijayakumar KP and Purushothaman C. J Mater Sci Lett, 1992, 11: 616~618.

Google Scholar

[5] Chavez H, Jordan M, McClure JC, Lush G and Singh VP, J Mater Sci: Electr Mater, 1997, 8: 151~154.

Google Scholar

[6] Izci F, Kose S and Kylyckaya MS. Proc Suppl Bpl, 1997, 5: 1115~1119.

Google Scholar

[7] Valyomana AG, Vijayakumar KP and Purushothaman C. J Mater Sci Lett, 1990, 9: 1025~1027.

Google Scholar

[8] Al Kuhaimi SA. Vacuum, 1998, 51: 349~355.

Google Scholar

[9] Gunal I and Parlak M. J Mater Sci: Electr Mater, 1997, 8: 9~13.

Google Scholar

[10] Pal U, Silva-Gonzalez R, Martinez-Montes G, Gracia-Jimenez M, Vidal MA and Torres S. Thin Solid Films, 1997, 305: 345~350.

DOI: 10.1016/s0040-6090(97)00124-7

Google Scholar

[11] D. Cahen and R. Noufi. Appl. Phys. Lett., 1989, 54: 558~560.

Google Scholar

[12] Ba L, Zhang Y and Lu Z H. Chin. Phys. , 2001, 10: 70~75.

Google Scholar

[13] Li B, Feng L H, Wang Z, Zheng X, Zheng J G, Cai Y P, Zhang J Q, Li W, Wu L L, Lei Z and Zeng G G. Chin. Phys. B, 2011, 20: 037103.

Google Scholar

[14] J. Lee. Appl. Surf. Sci., 2005, 252: 1398~1403.

Google Scholar

[15] B. Moon, J. Lee and H. Jung. Thin Solid Films, 2006, 511: 299~303.

Google Scholar

[16] A. Hartley, S.J.C. Irvine, D.P. Halliday and M.D.G. Potter. Thin Solid Films, 2001, 387: 89~91.

Google Scholar

[17] M. Hädrich, N. Lorenza, H. Metznera, U. Reislöhnera, S. Macka, M. Gosslaa and W. Witthuhn. Thin Solid Films, 2007, 515: 5804~5807.

Google Scholar

[18] N. Romeoa, A. Bosio, V. Canevarib, M. Terheggenc and L.V. Roca . Thin Solid Films, 2003, 431: 364~368.

Google Scholar

[19] A. Romeoa, D.L. Bätznera, H. Zogga, C. Vignalib and A.N. Tiwari. Sol. Energy Mater. Sol. Cells, 2001, 67: 311~321.

Google Scholar

[20] O. Vigil-Galán, A. Morales-Acevedo, F. Cruz-Gandarilla, M.G. Jiménez-Escamilla, J. Aguilar-Hernández, G. Contreras-Puente, J. Sastré-Hernández, E. Sánchez-Meza and M.L. Ramón-Garcia. Thin Solid Films, 2007, 515: 6085~6088.

DOI: 10.1016/j.tsf.2006.12.094

Google Scholar

[21] M.D. Archbold, D.P. Halliday, K. Durose, T.P.A. Hase, D. Smyth-Boyle and K. Govender. Conference Record of the 31st IEEE Photovoltaic Specialists Conference, Florida Orlando, America, 2005, p.475.

DOI: 10.1109/pvsc.2005.1488173

Google Scholar

[22] Ashour, A. Turkish Journal of Physics, 2003, 27: 551~558.

Google Scholar