An Experimental Investigation of a Cold Thermal Energy Storage System

Article Preview

Abstract:

This research work investigates the heat transfer characteristics of a direct contact heat exchanger. A cold two phase refrigerant R134a is injected into water stored in an evaporator to exchange directly heat with the water and form clathrates during the charging mode of the operation. The clathrate is used later for obtaining chilled water for air-conditioning purposes. It was found that the performance of the system depends on the refrigerant, its ratio to water, compressor speed and the mass flow rate of the refrigerant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

621-626

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Abhat A., Low Temperatue Thermal Energy Storage: Heat Storage Materials, Solar Energy, 30(4), (1983), pp.313-332.

DOI: 10.1016/0038-092x(83)90186-x

Google Scholar

[2] Wettermack, G. and Kowalewski, J., Storage of Low Temperature Heat: Solar Energy Thermal Storage, Swedish council for Building Research, (1976).

Google Scholar

[3] Lorsch HG, Kauffman KW, Denton JC, Thermal Energy Storage for Heating and Air-conditioning, Future Energy Production System. Heat Mass Transfer Process, (1976); pp.69-85.

Google Scholar

[4] Lane GA, Glew DN, Clark EC, Rossow HC, Quigley SW, Drake SS et al. Heat of Fusion For Solar Energy Subsystem For Heating and Cooling of Buildings, Charlottesville, Virginia, USA. (2004).

Google Scholar

[5] Farid MM, Kim Y, Kanszwa A. Thermal Performance of Heat Storage Module Using Pcms with Different Melting Temperatures-Experimental. Trans ASME, J Solar Energy Eng (1990); 112: 125-131.

DOI: 10.1115/1.2929644

Google Scholar

[6] Feldman D. Shapiro MM. Fatty Acids and Their Mixtures As Phase-Change Materials For Thermal Energy Storage. Solar Energy (1981), 18, 201-216.

DOI: 10.1016/0165-1633(89)90054-3

Google Scholar

[7] Biswas DR. Thermal Energy Storage Using Sodium Sulfate Decahydrate and Water. Solar Energy (1997); 19: 99-100.

DOI: 10.1016/0038-092x(77)90094-9

Google Scholar

[8] Dincer I. Rosen MA. Thermal Energy Storage: Systems and Applications . John Wiley and son Ltd Chester, West Sussex, 166-167, (2002).

Google Scholar

[9] Tomlinson, J. Clathrates and Conjugating Binaries: New Materials For Thermal Storage. ASHRAE Trans: 1931-1937. (1985).

Google Scholar

[10] Agyenim, F., Eames, P., Smyth, M. Heat Transfer Enhancement in Medium Temperature Thermal Energy Storage System Using A Multitube Heat Transfer Array. Renew. Energy 35, 198-207. (2010).

DOI: 10.1016/j.renene.2009.03.010

Google Scholar

[11] Be´de´carrats, J.P., Castaing-Lasvignottes, J., Strub, F., Dumas, J.P. Study of A Phase Change Energy Storage Using Spherical Capsules, Part I: Experimental Results. Energy Convers. Manage. 50, 2527-2536. (2009).

DOI: 10.1016/j.enconman.2009.06.004

Google Scholar

[12] Bi, Y., Guo, T., Zhang, L., Zhang, H., Chen, L. Experimental Study on Cool Release Process of Gas-Hydrate with Additives. Energy Build. 41, 120-124. (2009).

DOI: 10.1016/j.enbuild.2008.08.004

Google Scholar

[13] Erek, A., _Ilken, Z., Acar, M.A. Experimental and Numerical Investigation of Thermal Energy Storage with a Finned Tube. Int. J. Energy Res. 29, 283-301. (2005).

DOI: 10.1002/er.1057

Google Scholar

[14] Erek, A., Ezan, M.A. Experimental and Numerical Study on Charging Processes of an Ice-on-Coil Thermal Energy Storage System. Int. J. Energy Res. 31, 158-176. (2007).

DOI: 10.1002/er.1240

Google Scholar

[15] Jegadheeswaran, S., Pohekar, S.D., Kousksou, T. Exergy Based Performance Evaluation of Latent Heat Thermal Storage System: A Review. Renew. Sustain. Energy Rev. 14, 2580-2595. (2010).

DOI: 10.1016/j.rser.2010.07.051

Google Scholar

[16] Rady, M. Garnular Phase Change Materials for Thermal Energy Storage: Experiments and Numerical Simulations. Appl. Therm. Eng. 29, 3149-3159. (2009).

DOI: 10.1016/j.applthermaleng.2009.04.018

Google Scholar

[17] Tanino, M., Kozawa, Y. Ice-Water Two-Phase Flow Behavior in Ice Heat Storage Systems. Int. J. Refrigeration 24, 639-651. (2001).

DOI: 10.1016/s0140-7007(00)00085-2

Google Scholar

[18] Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl. Therm. Eng. 23, 251-283. (2003).

DOI: 10.1016/s1359-4311(02)00192-8

Google Scholar