A Hydrothermal Process for the Fabrication of Nickel Foam Based NiO and Co3O4 Nanostructures with Excellent Properties for Electrochemical Capacitors

Article Preview

Abstract:

Unique NiO and Co3O4 nanostructures were successfully deposited on nickel foam (NF) substrate by a hydrothermal process. Both of them are highly dispersed on the surface of NF, showing a unique nanoporous film structure. They exhibit excellent electrochemical performance due to their effective porous structure which introducing facile electrolyte penetration and fast proton exchange. The highest specific capacitance of 231 and 493 F g-1 are achieved for NiO and Co3O4 electrodes at a current density of 0.5 A g-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

786-790

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Liu, L.B. Kong, X.J. Ma, C. Lu, X.M. Li, Y.C. Luo and L. Kang: New J. of Chem. Vol. 36 (2012), p.1713.

Google Scholar

[2] J. Yan, T. Wei, W.M. Qiao, Z.J. Fan, L.J. Zhang, T.Y. Li and Q.K. Zhao: Electrochem Commun Vol. 12 (2010), p.1279.

Google Scholar

[3] Q.T. Qu, S.B. Yang and X.L. Feng, Adv. Mater. Vol. 23 (2011), p.5574.

Google Scholar

[4] J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M.L. Liu and Z.L. Wang: Angew. Chem. Int. Ed. Vol. 50 (2011), p.1683.

Google Scholar

[5] Z.S. Wu, D.W. Wang, W. C. Ren, J. P. Zhao, G. M. Zhou, F. Li and H. M. Cheng: Adv. Funct. Mater. Vol. 20 (2010), p.3595.

Google Scholar

[6] J.W. Lang, X.B. Yan and Q.J. Xue: J. Power Sources Vol. 196 (2011), p.7841.

Google Scholar

[7] S.J. Ding, T. Zhu, J.S. Chen, Z.Y. Wang, C.L. Yuan and X.W. Lou: J. Mater. Chem. Vol. 21 (2011), p.6602.

Google Scholar

[8] L.B. Kong, J.W. Lang, M. Liu, Y.C. Luo and L.J. Kang: Power sources Vol. 194 (2009), p.1194.

Google Scholar

[9] G.X. Wang, X.P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler and J. Yao: J. Phys. Chem. C Vol. 113 (2009), p.4357.

Google Scholar

[10] J.K. Lee, G.P. Kim, K.H. Kim, I.K. Song and S.H. Baeck: J. Nanosci. Nanotechnol. Vol. 10 (2010), p.3676.

Google Scholar

[11] C.Z. Yuan, L. Chen, B. Gao, L.H. Su and X.G. Zhang: J. Mater. Chem. Vol. 19 (2009), p.246.

Google Scholar

[12] G.R. Li, Z.L. Wang, F.L. Zheng, Y.N. Ou and Y.X. Tong: J. Mater. Chem. Vol. 21 (2011), p.4217.

Google Scholar

[13] W.J. Zhou, M.W. Xu, D.D. Zhao, C.L. Xu and H.L. Li: Micropor. Mesopor. Mater. Vol. 117 (2009), p.55.

Google Scholar

[14] J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo and L. Kang: Chem. Commun. Vol. 35 (2008), p.4213.

Google Scholar

[15] Y.Q. Wu, X.Y. Chen, P.T. Ji and Q.Q. Zhou: Electrochim. Acta Vol. 56 (2011), p.7517.

Google Scholar

[16] H.T. Wang, L. Zhang, X.H. Tan, C.M.B. Holt, B. Zahiri, B. Olsen and C.D. Mitlin: J. Phys. Chem. C Vol. 115 (2011), p.17599.

Google Scholar

[17] Y.F. Yuan, X.H. Xia, J.B. Wu, X.H. Huang, Y.B. Pei, J.L. Yang and S.Y. Guo, Electrochem. Commun. Vol. 13 (2011), p.1123.

Google Scholar

[18] O.N. Kalugin, V.V. Chaban, V.V. Loskutov and O.V. Prezhdo: Nano Lett Vol. 8 (2008), p.2126.

Google Scholar