Simulation of New Solar Heating System for Heating Biogas Digesters above Ground in Cold Regions

Article Preview

Abstract:

The biogas amounts with stable flowing rate require heating in cold weather. This study focuses on using solar energy for heating biogas digester. In this research we used energy plus building energy simulation software and real weather data for simulation the heating of biogas digester with 8760 hours simulation .The research was carried out in two parts: The first one is one biogas digester above ground without heating. The Second part of this study is a simulation of one biogas digester with solar heating by using a new design based on double plastic cover. It has shown that the use of solar energy can achieve the optimum temperature for biogas production process almost the year time. Using double plastic cover is the most suitable method with economic form for heating biogas digester above ground.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-95

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Deublein., A. Steinhauser., Biogas from waster and renewable resoureces, Wiley-VCH, New York, (2008).

Google Scholar

[2] H.M. El-Mashad, G. Zeeman, W.K.P. van Loon, G.P.A. Bot, G. Lettinga, Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure, Bioresource Technology, 95 (2) (2004) 191-201.

DOI: 10.1016/j.biortech.2003.07.013

Google Scholar

[3] M.C. Wu, K.W. Sun, Y. Zhang, Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste, J Zhejiang Univ Sci B, 7 (3) (2006) 180-185.

DOI: 10.1631/jzus.2006.b0180

Google Scholar

[4] R. Alvarez, G. Lidén, The effect of temperature variation on biomethanation at high altitude, Bioresource Technology, 99 (15) (2008) 7278-7284.

DOI: 10.1016/j.biortech.2007.12.055

Google Scholar

[5] K. Boe, D. Karakashev, E. Trably, I. Angelidaki, Effect of post-digestion temperature on serial CSTR biogas reactor performance, Water Research, 43 (3) (2009) 669-676.

DOI: 10.1016/j.watres.2008.11.037

Google Scholar

[6] J.K. Kim, B.R. Oh, Y.N. Chun, S.W. Kim, Effects of temperature and hydraulic retention time on anaerobic digestion of food waste, J Biosci Bioeng, 102 (4) (2006) 328-332.

DOI: 10.1263/jbb.102.328

Google Scholar

[7] K. Vinoth Kumar, R. Kasturi Bai, Solar greenhouse assisted biogas plant in hilly region - A field study, Solar Energy, 82 (10) (2008) 911-917.

DOI: 10.1016/j.solener.2008.03.005

Google Scholar

[8] G.N. Tiwari, J.A. Usmani, A. Chandra, Determination of period for biogas production, Energy Conversion and Management, 37 (2) (1996) 199-203.

DOI: 10.1016/0196-8904(95)00167-c

Google Scholar

[9] J.A. Usmani, G.N. Tiwari, A. Chandra, Performance characteristic of a greenhouse integrated biogas system, Energy Conversion and Management, 37 (9) (1996) 1423-1433.

DOI: 10.1016/0196-8904(95)00228-6

Google Scholar

[10] P. Axaopoulos, P. Panagakis, Energy and economic analysis of biogas heated livestock buildings, Biomass and Bioenergy, 24 (3) (2003) 239-248.

DOI: 10.1016/s0961-9534(02)00134-4

Google Scholar

[11] G.N. Tiwari, A.K. Dubey, R.K. Goyal, Analytical study of an active winter greenhouse, Energy, 22 (4) (1997) 389-392.

DOI: 10.1016/s0360-5442(96)00118-1

Google Scholar

[12] G.N. Tiwari, M.K. Ghosal, Greenhouse Technology Fundamentals Design, Narosa Publishing House, New Delhi, (2005).

Google Scholar

[13] R.F. Sutar, G.N. Tiwari, Temperature reductions inside a greenhouse, Energy, 21 (1) (1996) 61-65.

DOI: 10.1016/0360-5442(95)00084-4

Google Scholar

[14] U.S.D.O. E, energy plus, 2011, www. energyplus. gov., (27-4-2011).

Google Scholar

[15] G. Ramos, E. Ghisi, Analysis of daylight calculated using the EnergyPlus programme, Renewable and Sustainable Energy Reviews, 14 (7) (2010) 1948-(1958).

DOI: 10.1016/j.rser.2010.03.040

Google Scholar

[16] R.H. Henninger, M.J. Witte, D.B. Crawley, Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100-E200 test suite, Energy and Buildings, 36 (8) (2004) 855-863.

DOI: 10.1016/j.enbuild.2004.01.025

Google Scholar

[17] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. Pedersen, R.K. Strand, R.J. Liesen, D.E. Fisher, M.J. Witte, J. Glazer, EnergyPlus: creating a new-generation building energy simulation program, Energy and Buildings, 33 (4) (2001).

DOI: 10.1016/s0378-7788(00)00114-6

Google Scholar

[18] P. Ihm, M. Krarti, G.P. Henze, Development of a thermal energy storage model for EnergyPlus, Energy and Buildings, 36 (8) (2004) 807-814.

DOI: 10.1016/j.enbuild.2004.01.021

Google Scholar

[19] G. s. p. software., Google sketchup 8. 0. 4811, 2010, http: /sketchup. google. com/intl/en/, (2011-05-11).

Google Scholar

[20] E. s. software, Energyplus simulation software, 6. 0. 0, 2010, http: /apps1. eere. energy. gov/buildings/energyplus/energyplus_about. cfm., (2011-05-11).

DOI: 10.31274/rtd-180813-11659

Google Scholar

[21] O.W. M., World Meteorological Organization, 2009, http: /www. wmo. int/pages/about/index_en. html., (2011-1-1).

Google Scholar

[22] E.P.D. W., Energyplus data weather., 2009, http: /apps1. eere. energy. gov/buildings/energyplus/weatherdata_about. cfm., (2011-1-1).

Google Scholar