Adsorption Characteristics of Phenol in Aqueous Solution by Pinus massoniana Biochar

Article Preview

Abstract:

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1154-1160

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Arslan, C.S. and Dursun, A. Y: Separation Science and Technology. Vol. 43 (2008), p.3251.

Google Scholar

[2] Özkaya, B: Journal of hazardous materials. Vol. 129 (2006), p.158.

Google Scholar

[3] Tancredi, N. , Medero, N. , Möller, F. , Píriz, J. , Plada, C. and Cordero, T: Journal of colloid and interface science. Vol. 279 (2004), p.357.

DOI: 10.1016/j.jcis.2004.06.067

Google Scholar

[4] Richard, D. , Delgado Núñez, M.L. and Schweich, D: Chemical Engineering Journal. Vol. 148 (2009), p.1.

Google Scholar

[5] Uddin, M. , Islam, M. and Abedin, M: ARPN J. Eng. Appl. Sci. Vol. 2 (2007), p.11.

Google Scholar

[6] László, K. , Tombácz, E. and Kerepesi, P: Colloids and Surfaces A: Physicochemical and Engineering Aspects. Vol. 230 (2003), p.13.

DOI: 10.1016/j.colsurfa.2003.09.009

Google Scholar

[7] Lehmann, J. and Joseph, S. Biochar for environmental management: science and technology (Johannes Lehmann and Stephen Joseph, New York 2009).

Google Scholar

[8] Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. and Joseph, S: Soil Research. Vol. 45 (2007), p.629.

DOI: 10.1071/sr07109

Google Scholar

[9] Lehmann, J: Nature. Vol. 447 (2007), p.143.

Google Scholar

[10] Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S. and Cowie A: Plant soil. Vol. 327 (2010), p.235.

DOI: 10.1007/s11104-009-0050-x

Google Scholar

[11] Cornelissen, G. and Gustafsson, Ö: Environmental science & technology. Vol. 39 (2005), p.764.

Google Scholar

[12] Beesley, L., Moreno-Jiménez, E. and Gomez-Eyles, J. L: Environmental pollution. Vol. 158 (2010), p.2282.

Google Scholar

[13] Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L., Harris, E., Robinson, B. and Sizmur, T: Environmental pollution. Vol. 159 (2011), p.3269.

DOI: 10.1016/j.envpol.2011.07.023

Google Scholar

[14] Rengaraj, S., Sivabalan, R., Arabindoo, B. and Murugesan, V: Indian journal of chemical technology. Vol. 7 (2000), p.127.

Google Scholar

[15] Singh, B.K., Misra, N.M. and Rawat, N. S: Indian Journal of Environmental Health. Vol. 36 (1994), p.1.

Google Scholar

[16] Baker, H. and Khalili, F: Analytica Chimica Acta. Vol. 516 (2004), p.179.

Google Scholar

[17] Langmuir, I: solids. Journal of the American Chemical Society. Vol. 38 (1916), p.2221.

Google Scholar

[18] Smith, J.M. and Van Ness, H. Chemical engineering kinetics (McGraw-Hill, New York 1970).

Google Scholar

[19] Ho, Y.S. and McKay, G: Process Biochemistry. Vol. 34 (1999), p.451.

Google Scholar

[20] S. Rengaraj, B. Arabindoo, V. Murugesan: Indian Journal of Environmental Health. Vol. 41 (1999), p.16.

Google Scholar