[1]
Niu S.L., et al., Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds, Chem. Eng. J., 168(2011), 255~261.
DOI: 10.1016/j.cej.2010.10.082
Google Scholar
[2]
Man C.K., et al., Coal characterisation for NOx prediction in air-staged combustion of pulverised coals, Fuel 84(2005), 2190~2195.
DOI: 10.1016/j.fuel.2005.06.011
Google Scholar
[3]
Brown T.D., et al., Mercury measurement and its control: what we know, have learned and need to further investigate, J. Air Waste Manage. Assoc., 49(1999), 628~640.
DOI: 10.1080/10473289.1999.10463844
Google Scholar
[4]
Hua X.Y., et al., Gas-phase elemental mercury removal by CeO2 impregnated activated coke, Energy Fuels, 24(2010), 5426~5431.
DOI: 10.1021/ef100554t
Google Scholar
[5]
Stein E.D., et al., Environmental distribution and transformation of mercury compounds, Crit. Rev. Environ. Sci. Technol., 26 (1996), 1~43.
Google Scholar
[6]
J.B. Milford, A. Pienciak, After the clean air mercury rule: prospects for reducing mercury emissions from coal-fired power plants, Environ. Sci. Technol., 43(2009), 2669–2673.
DOI: 10.1021/es802649u
Google Scholar
[7]
I. Dahlan, et al., Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal, J. Hazard. Mater., 166(2009), 1556~1559.
DOI: 10.1016/j.jhazmat.2008.12.028
Google Scholar
[8]
Wu Y., et al., Industrial experiments on desulfurization of flue gases by pulsed corona inducedplasma chemical process, Journal of Electrostatics, 57 (2003), 233–241.
DOI: 10.1016/s0304-3886(02)00163-8
Google Scholar
[9]
Streets D. G., et al., Anthropogenic mercury emissions in China, Atmospheric Environment, 39(2005), 7789–7806.
DOI: 10.1016/j.atmosenv.2005.08.029
Google Scholar
[10]
Cheng J. et al., Sulfur removal at high temperature during coal combustion in furnaces: a review, Progress in Energy and Combustion Science, 29(2003), 381~405.
DOI: 10.1016/s0360-1285(03)00030-3
Google Scholar
[11]
Wendt J. O. L., et al., Hybrid SNCR/SCR technologies for NOx control modeling and experiment, AIChE Journal, 47(2001), 2603~2617.
DOI: 10.1002/aic.690471123
Google Scholar
[12]
Romero C.E., et al., Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers, Fuel, 85(2006), 204~212.
DOI: 10.1016/j.fuel.2005.04.032
Google Scholar
[13]
Pushan Shah, et al., Speciation of As, Cr, Se and Hg under coal fired power station conditions, Fuel 87 (2008), 1859–1869.
DOI: 10.1016/j.fuel.2007.12.001
Google Scholar
[14]
Li P., et al., Mercury pollution in Asia: a review of the contaminated sites, J. Hazard. Mater., 168(2009), 591~601.
Google Scholar
[15]
Sjostrom S., et al., Activated carbon injection for mercury control: overview, Fuel, 89(2010), 1320~1322.
DOI: 10.1016/j.fuel.2009.11.016
Google Scholar
[16]
Choi H.K., et al., The effect of activated carbon injection rate on the removal of elemental mercury in a particulate collector with fabric filters, Fuel Process. Technol., 90(2009), 107~112.
DOI: 10.1016/j.fuproc.2008.08.001
Google Scholar
[17]
Hutson N.D., et al., Assessment of PCDD/F and PBDD/F emissions from coal-fired power plants during injection of brominated activated carbon for mercury control, Atmos. Environ., 43(2009), 3973~3980.
DOI: 10.1016/j.atmosenv.2009.05.026
Google Scholar
[18]
Kawada, Y., et al., Simultaneous removal of aerosol particles, NOx and SO2, from incense smokes by a DC electrostatic precipitator with dielectric barrier discharge rechargers, J. Phys. D Appl. Phys., 35 (16) (2002), 1961~(1966).
DOI: 10.1088/0022-3727/35/16/310
Google Scholar
[19]
Yamamoto, T., et al., Plasma-Assisted Chemical Process for NOx Control, IEEE Trans. Ind. Appl., 36 (3) (2000), 923~927.
Google Scholar
[20]
Yan, K.P., et al., A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale, Chem. Eng., 116 (2) (2006), 139~147.
DOI: 10.1016/j.cej.2005.09.030
Google Scholar
[21]
Bratislav M. O., et. al., A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas, Journal of Hazardous Materials, (2011) 185: 1280~1286).
DOI: 10.1016/j.jhazmat.2010.10.043
Google Scholar
[22]
Radoiu M.T., et al., Emission control of SO2 and NOx by irradiation methods, Journal of Hazardous Materials, B97(2003), 145~158.
DOI: 10.1016/s0304-3894(02)00256-x
Google Scholar
[23]
Yu Q., et al., Simultaneous removal of NO and SO2 from dry gas stream using non-thermal plasma, Journal of Environmental Sciences, 19(2007), 1393~1397.
DOI: 10.1016/s1001-0742(07)60227-7
Google Scholar
[24]
Lowke J.J., et al., Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators, IEEE Trans. Plasma Sci., 23(1995), 661~671.
DOI: 10.1109/27.467988
Google Scholar
[25]
Ighigeanu D., et al., SO2 and NOx removal by electron beam and electrical discharge induced non-thermal plasma, Vaccum, 77(2005), 493–500.
DOI: 10.1016/j.vacuum.2004.09.009
Google Scholar
[26]
Chang J.S., et al., Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems: pilot plant tests, Journal of Electrostatics, 57(2003), 313~323.
DOI: 10.1016/s0304-3886(02)00168-7
Google Scholar
[27]
Wang R., et al., Apparent energy yield of a high efficiency pulse generator with respect to SO2 and NOx removal, Journal of Electrostatics, 34(1995), 355~366.
DOI: 10.1016/0304-3886(94)00022-o
Google Scholar
[28]
Wu Y., et al., Industrial experiments on desulfurization of flue gases by pulsed corona induced plasma chemical process, Journal of Electrostatics, 57(2003), 233~241.
DOI: 10.1016/s0304-3886(02)00163-8
Google Scholar
[29]
Yu C.J. et al., Influences of water vapor and fly ash addition on NO and SO2 gas conversion efficiencies enhanced by pulsed corona discharge, Journal of Electrostatics, 67(2009), 829~834.
DOI: 10.1016/j.elstat.2009.06.003
Google Scholar
[30]
Huang L.W., et. al., Removal of SO2 and NOx by Pulsed Corona Combined with in situ Ca(OH)2 Absorption, Chinese Journal of Chemical Engineering, 19(3) (2011), 518~522.
DOI: 10.1016/s1004-9541(11)60015-3
Google Scholar
[31]
Nasonova A. et al, NO and SO2 removal in non-thermal plasma reactor packed with glass beads-TiO2 thin film coated by PCVD process, Chemical Engineering Journal, 156(2010), 557~561.
DOI: 10.1016/j.cej.2009.04.037
Google Scholar
[32]
Ko K.B., et al., Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process, Chemosphere, 71(2008), 1674~1682.
DOI: 10.1016/j.chemosphere.2008.01.015
Google Scholar
[33]
Wang Z.H., et al., Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment, Fuel Processing Technology, 91(2010), 1395~1400.
DOI: 10.1016/j.fuproc.2010.05.012
Google Scholar
[34]
Chen Z.Y. et al., Mercury Oxidization in Dielectric Barrier Discharge Plasma System, Ind. Eng. Chem. Res., 45(2006), 6050~6055.
DOI: 10.1021/ie0603666
Google Scholar
[35]
Byun Y., et al., Oxidation of elemental mercury using atmospheric pressure non-thermal plasma, Chemosphere, 72(2008), 652~658.
DOI: 10.1016/j.chemosphere.2008.02.021
Google Scholar
[36]
Yang H.M., et al., Photochemical Removal of Gaseous Elemental Mercury in a Dielectric Barrier Discharge Plasma Reactor, Plasma Chem. Plasma Process, 32(2012), 969~977.
DOI: 10.1007/s11090-012-9393-9
Google Scholar
[37]
Wang M.Y., et al., Oxidation of gaseous elemental mercury in a high voltage discharge reactor, Journal of Environmental Sciences, 21(2009), 1652~1657.
DOI: 10.1016/s1001-0742(08)62469-9
Google Scholar
[38]
Byun Y., et al., Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury, Chemosphere, 84(2011), 1285~1289.
DOI: 10.1016/j.chemosphere.2011.05.044
Google Scholar
[39]
Byun Y., et al., Removal mechanism of elemental mercury by using non-thermal plasma, Chemosphere, 83 (2011), 69~75.
DOI: 10.1016/j.chemosphere.2010.12.003
Google Scholar
[40]
Jeong J., et al., Removal of gaseous elemental mercury by dielectric barrier discharge, Chemosphere, 68(2007), 2007~(2010).
DOI: 10.1016/j.chemosphere.2007.01.044
Google Scholar
[41]
Xu F., et al., Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge, Journal of Environmental Sciences, 21 (2009), 328~332.
DOI: 10.1016/s1001-0742(08)62272-x
Google Scholar
[42]
Liang, X., et al., Mercury and other trace elements removal characteristics of DC and pulse-energized electrostatic precipitator, IEEE Trans. Ind. Appl., 38(2002), 69~76.
DOI: 10.1109/28.980355
Google Scholar
[43]
Ko K.B., et al., Pulsed corona discharge for oxidation of gaseous elemental mercury, Appl. Phys. Lett., (2008) 92, 251503. 1~251503. 3.
DOI: 10.1063/1.2952496
Google Scholar
[44]
Ko K.B., et al., Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process, Chemosphere, 71(2008), 1674~1682.
DOI: 10.1016/j.chemosphere.2008.01.015
Google Scholar