Research Progress of Plasma Technology in Treating NO, SO2 and Hg0 from Flue Gas

Article Preview

Abstract:

With the rapid development in industrialization and urbanization, various air pollutants are emitted into atmospheric environment. NO, SO2, Hg0 are the most important pollutant in the flue gas. The application of non-thermal plasma (NTP) technology in the removal of NO, SO2, Hg0 was reviewed respectively. Environmental applications have mainly involved plus corona discharge (PCD) and dielectric barrier discharge (DBD) system. In the future, the application of plasma technology in the flue gas could be focused on multiple pollutants synergistic mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1293-1298

Citation:

Online since:

February 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Niu S.L., et al., Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds, Chem. Eng. J., 168(2011), 255~261.

DOI: 10.1016/j.cej.2010.10.082

Google Scholar

[2] Man C.K., et al., Coal characterisation for NOx prediction in air-staged combustion of pulverised coals, Fuel 84(2005), 2190~2195.

DOI: 10.1016/j.fuel.2005.06.011

Google Scholar

[3] Brown T.D., et al., Mercury measurement and its control: what we know, have learned and need to further investigate, J. Air Waste Manage. Assoc., 49(1999), 628~640.

DOI: 10.1080/10473289.1999.10463844

Google Scholar

[4] Hua X.Y., et al., Gas-phase elemental mercury removal by CeO2 impregnated activated coke, Energy Fuels, 24(2010), 5426~5431.

DOI: 10.1021/ef100554t

Google Scholar

[5] Stein E.D., et al., Environmental distribution and transformation of mercury compounds, Crit. Rev. Environ. Sci. Technol., 26 (1996), 1~43.

Google Scholar

[6] J.B. Milford, A. Pienciak, After the clean air mercury rule: prospects for reducing mercury emissions from coal-fired power plants, Environ. Sci. Technol., 43(2009), 2669–2673.

DOI: 10.1021/es802649u

Google Scholar

[7] I. Dahlan, et al., Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal, J. Hazard. Mater., 166(2009), 1556~1559.

DOI: 10.1016/j.jhazmat.2008.12.028

Google Scholar

[8] Wu Y., et al., Industrial experiments on desulfurization of flue gases by pulsed corona inducedplasma chemical process, Journal of Electrostatics, 57 (2003), 233–241.

DOI: 10.1016/s0304-3886(02)00163-8

Google Scholar

[9] Streets D. G., et al., Anthropogenic mercury emissions in China, Atmospheric Environment, 39(2005), 7789–7806.

DOI: 10.1016/j.atmosenv.2005.08.029

Google Scholar

[10] Cheng J. et al., Sulfur removal at high temperature during coal combustion in furnaces: a review, Progress in Energy and Combustion Science, 29(2003), 381~405.

DOI: 10.1016/s0360-1285(03)00030-3

Google Scholar

[11] Wendt J. O. L., et al., Hybrid SNCR/SCR technologies for NOx control modeling and experiment, AIChE Journal, 47(2001), 2603~2617.

DOI: 10.1002/aic.690471123

Google Scholar

[12] Romero C.E., et al., Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers, Fuel, 85(2006), 204~212.

DOI: 10.1016/j.fuel.2005.04.032

Google Scholar

[13] Pushan Shah, et al., Speciation of As, Cr, Se and Hg under coal fired power station conditions, Fuel 87 (2008), 1859–1869.

DOI: 10.1016/j.fuel.2007.12.001

Google Scholar

[14] Li P., et al., Mercury pollution in Asia: a review of the contaminated sites, J. Hazard. Mater., 168(2009), 591~601.

Google Scholar

[15] Sjostrom S., et al., Activated carbon injection for mercury control: overview, Fuel, 89(2010), 1320~1322.

DOI: 10.1016/j.fuel.2009.11.016

Google Scholar

[16] Choi H.K., et al., The effect of activated carbon injection rate on the removal of elemental mercury in a particulate collector with fabric filters, Fuel Process. Technol., 90(2009), 107~112.

DOI: 10.1016/j.fuproc.2008.08.001

Google Scholar

[17] Hutson N.D., et al., Assessment of PCDD/F and PBDD/F emissions from coal-fired power plants during injection of brominated activated carbon for mercury control, Atmos. Environ., 43(2009), 3973~3980.

DOI: 10.1016/j.atmosenv.2009.05.026

Google Scholar

[18] Kawada, Y., et al., Simultaneous removal of aerosol particles, NOx and SO2, from incense smokes by a DC electrostatic precipitator with dielectric barrier discharge rechargers, J. Phys. D Appl. Phys., 35 (16) (2002), 1961~(1966).

DOI: 10.1088/0022-3727/35/16/310

Google Scholar

[19] Yamamoto, T., et al., Plasma-Assisted Chemical Process for NOx Control, IEEE Trans. Ind. Appl., 36 (3) (2000), 923~927.

Google Scholar

[20] Yan, K.P., et al., A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale, Chem. Eng., 116 (2) (2006), 139~147.

DOI: 10.1016/j.cej.2005.09.030

Google Scholar

[21] Bratislav M. O., et. al., A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas, Journal of Hazardous Materials, (2011) 185: 1280~1286).

DOI: 10.1016/j.jhazmat.2010.10.043

Google Scholar

[22] Radoiu M.T., et al., Emission control of SO2 and NOx by irradiation methods, Journal of Hazardous Materials, B97(2003), 145~158.

DOI: 10.1016/s0304-3894(02)00256-x

Google Scholar

[23] Yu Q., et al., Simultaneous removal of NO and SO2 from dry gas stream using non-thermal plasma, Journal of Environmental Sciences, 19(2007), 1393~1397.

DOI: 10.1016/s1001-0742(07)60227-7

Google Scholar

[24] Lowke J.J., et al., Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators, IEEE Trans. Plasma Sci., 23(1995), 661~671.

DOI: 10.1109/27.467988

Google Scholar

[25] Ighigeanu D., et al., SO2 and NOx removal by electron beam and electrical discharge induced non-thermal plasma, Vaccum, 77(2005), 493–500.

DOI: 10.1016/j.vacuum.2004.09.009

Google Scholar

[26] Chang J.S., et al., Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems: pilot plant tests, Journal of Electrostatics, 57(2003), 313~323.

DOI: 10.1016/s0304-3886(02)00168-7

Google Scholar

[27] Wang R., et al., Apparent energy yield of a high efficiency pulse generator with respect to SO2 and NOx removal, Journal of Electrostatics, 34(1995), 355~366.

DOI: 10.1016/0304-3886(94)00022-o

Google Scholar

[28] Wu Y., et al., Industrial experiments on desulfurization of flue gases by pulsed corona induced plasma chemical process, Journal of Electrostatics, 57(2003), 233~241.

DOI: 10.1016/s0304-3886(02)00163-8

Google Scholar

[29] Yu C.J. et al., Influences of water vapor and fly ash addition on NO and SO2 gas conversion efficiencies enhanced by pulsed corona discharge, Journal of Electrostatics, 67(2009), 829~834.

DOI: 10.1016/j.elstat.2009.06.003

Google Scholar

[30] Huang L.W., et. al., Removal of SO2 and NOx by Pulsed Corona Combined with in situ Ca(OH)2 Absorption, Chinese Journal of Chemical Engineering, 19(3) (2011), 518~522.

DOI: 10.1016/s1004-9541(11)60015-3

Google Scholar

[31] Nasonova A. et al, NO and SO2 removal in non-thermal plasma reactor packed with glass beads-TiO2 thin film coated by PCVD process, Chemical Engineering Journal, 156(2010), 557~561.

DOI: 10.1016/j.cej.2009.04.037

Google Scholar

[32] Ko K.B., et al., Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process, Chemosphere, 71(2008), 1674~1682.

DOI: 10.1016/j.chemosphere.2008.01.015

Google Scholar

[33] Wang Z.H., et al., Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment, Fuel Processing Technology, 91(2010), 1395~1400.

DOI: 10.1016/j.fuproc.2010.05.012

Google Scholar

[34] Chen Z.Y. et al., Mercury Oxidization in Dielectric Barrier Discharge Plasma System, Ind. Eng. Chem. Res., 45(2006), 6050~6055.

DOI: 10.1021/ie0603666

Google Scholar

[35] Byun Y., et al., Oxidation of elemental mercury using atmospheric pressure non-thermal plasma, Chemosphere, 72(2008), 652~658.

DOI: 10.1016/j.chemosphere.2008.02.021

Google Scholar

[36] Yang H.M., et al., Photochemical Removal of Gaseous Elemental Mercury in a Dielectric Barrier Discharge Plasma Reactor, Plasma Chem. Plasma Process, 32(2012), 969~977.

DOI: 10.1007/s11090-012-9393-9

Google Scholar

[37] Wang M.Y., et al., Oxidation of gaseous elemental mercury in a high voltage discharge reactor, Journal of Environmental Sciences, 21(2009), 1652~1657.

DOI: 10.1016/s1001-0742(08)62469-9

Google Scholar

[38] Byun Y., et al., Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury, Chemosphere, 84(2011), 1285~1289.

DOI: 10.1016/j.chemosphere.2011.05.044

Google Scholar

[39] Byun Y., et al., Removal mechanism of elemental mercury by using non-thermal plasma, Chemosphere, 83 (2011), 69~75.

DOI: 10.1016/j.chemosphere.2010.12.003

Google Scholar

[40] Jeong J., et al., Removal of gaseous elemental mercury by dielectric barrier discharge, Chemosphere, 68(2007), 2007~(2010).

DOI: 10.1016/j.chemosphere.2007.01.044

Google Scholar

[41] Xu F., et al., Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge, Journal of Environmental Sciences, 21 (2009), 328~332.

DOI: 10.1016/s1001-0742(08)62272-x

Google Scholar

[42] Liang, X., et al., Mercury and other trace elements removal characteristics of DC and pulse-energized electrostatic precipitator, IEEE Trans. Ind. Appl., 38(2002), 69~76.

DOI: 10.1109/28.980355

Google Scholar

[43] Ko K.B., et al., Pulsed corona discharge for oxidation of gaseous elemental mercury, Appl. Phys. Lett., (2008) 92, 251503. 1~251503. 3.

DOI: 10.1063/1.2952496

Google Scholar

[44] Ko K.B., et al., Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process, Chemosphere, 71(2008), 1674~1682.

DOI: 10.1016/j.chemosphere.2008.01.015

Google Scholar