Microbial Perchlorate Reduction in Groundwater with Different Electron Donors

Article Preview

Abstract:

Effects of different electron donors (acetate and hydrogen), acetate and perchlorate concentrations on microbial perchlorate reduction in groundwater were studied. The results showed that acetate and hydrogen addition as an electron donor can significantly improve perchlorate removal efficiency while a longer period was observed for hydrogen (15 d) than for acetate (8 d). The optical ratio of electron donor (acetate)-to-electron acceptor (perchlorate) was approximately 1.65 mg COD mg perchlorate-1. The highest specific reduction rate of perchlorate was achieved at the acetate-to-perchlorate ratio of 3.80 mg COD mg perchlorate-1. The perchlorate reduction rates corresponded well to the theoretical values calculated by the Monod equation and the parameters of Ks and Vm were determined to be 15.6 mg L-1 and 0.26 d-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1402-1407

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kosakaa, M. Asami and Y. Matsuoka: Water Res. Vol. 41(2007), p.3474.

Google Scholar

[2] A. M. Leung, E. N. Pearce and L. E. Braveman: Best Pract Res Clin Endocrinol Metab. Vol. 24 (2010), p.133.

Google Scholar

[3] Information on http: /www. epa. gov/fedfac/documents/perchlorate_releases_us_20050325. htm [EB/OL] (2005).

Google Scholar

[4] Information on http: /www. epa. gov/fedrgstr/EPA-WATER/2009/August/Day-19/w19507. pdf[EB/OL] (2009).

Google Scholar

[5] H. J. Qian, S. L. Xi and P. He: Environ Sci in Chinese. Vol. 30 (2009), p.1402.

Google Scholar

[6] A. K. Sahu, T. Conneely and K. R. Nusslein: Environ Sci Technol. Vol. 43(2009), p.4466.

Google Scholar

[7] A. Son, J. Lee and P. C. Chiu: Water Res. Vol. 40 (2006), p. (2027).

Google Scholar

[8] S. W. V. Ginkel, R. Lamendella and W. P. Kovacik: Bioresour Technol. Vol. 101(2010), p.3747.

Google Scholar

[9] S. J. Nor, S. H. Lee, K. S. Chos, D. K. Cha, K. I. Lee, H. W. Ryu: Bioresour Technol. Vol. 102(2011), p.835.

Google Scholar

[10] D. L. Wu, P. He, X. H. Xu, M. Zhou, Z. D. Houda: J Hazard Mater. Vol. 150(2008), p.419.

Google Scholar

[11] X. Y. Yu, C. Amrhein and M. A. Deshusses: Environ Sci Technol. Vol. 40(2006), p.1328.

Google Scholar

[12] D. R. Parker, A. L. Seyfferth and B. K. Reese: Environ Sci Technol. Vol. 42 (2008), p.1465.

Google Scholar

[13] R. W. Gullick, M. W. Lechevallier and T. S. Barhorst: J Am Water Works Ass. Vol. 93 (2001), p.66.

Google Scholar

[14] J. D. Shrout, G. F. Parkin: Water Res. Vol. 40 (2006), p.1191.

Google Scholar

[15] Y. H. Farhan, P. B. Hatainger: Biorem J. Vol. 13(2009), p.65.

Google Scholar

[16] K. Kim, B. E. Logan: Water Res. Vol. 35 (2001), p.3071.

Google Scholar

[17] R. Nerenberg, Y. Kawagoshi, B. E. Rittnann. Water Res. Vol. 40 (2006), p.3290.

Google Scholar

[18] C. Wang, L. Lippincott and X. G. Meng: J Hazard Mater. Vol. 153(2008), p.663.

Google Scholar

[19] R. Nerenberg, Y. Kawagoshi, B. E. Rittnann. Water Res. Vol. 42 (2008), p.1151.

Google Scholar