Effect of PH on PCP Remediation by Smectite Supported Pd0/Fe0

Article Preview

Abstract:

Due to its influence on iron corrosion and involvement in dechlorination reaction, the concentration of H+ (i.e. reaction pH) is crucial to the reactivity and efficiency of nanosized Pd0/Fe0. In this study, PCP dechlorination by smectite-templated Pd0/Fe0 was studied and the effect of pH on PCP dechlorination was investigated in detail. The reaction rate constant is critically dependant on the reaction pH over the range 6.0~10.0. When the pH is 6.0~8.0, the dechlorination rate constant () increases rapidly with decreasing the reaction pH value; the rate change is up to 3.346 folds with decreasing of per pH unit; while it decreases down to 0.3338 when pH is in the range 8.0~10.0. The reductive efficiency of zero-valent iron (ZVI) was further investigated by spiking excess PCP in the reaction system. The maximal reaction efficiency of ZVI for PCP dechlorination attains to 78% when pH is 9.0. The difference between the dechlorination rate and reductive efficiency with respect to reaction pH suggest that ZVI could not be effectively utilized to reduce PCP under acidic condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1490-1496

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Agrawal, A, Ferguson, W. J, Gardner, B. O, Christ, J. A, Bandstra, J. Z., Tratnyek, P. G. Effects of carbonate species on the kinetics of dechlorination of 1, 1, 1-trichloroethane by zero-valent iron. Environ. Sci. Technol. Vol. 36(2002).

DOI: 10.1021/es025562s

Google Scholar

[2] Cao, J. S., Zhang, W. X. Perchlorate reduction by nanoscale iron particles. J. Nanopart. Res. Vol. (2005)7, p.499—506.

Google Scholar

[3] Choi, J. H, Choi, S. J., Kim, Y. H. Hydrodechlorination of 2, 4, 6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron. Korean J. Chem. Eng. Vol. 3 (2008), p.493—500.

DOI: 10.1007/s11814-008-0083-5

Google Scholar

[4] Chena, J. L., Al-Abed, R. S., Ryan, A. J., Li, Z. B. Effects of PH on dechlorination of TCE by zero-valent iron. J. Hazard. Mater. Vol. 83( 2001) , p.243–254.

DOI: 10.1016/s0304-3894(01)00193-5

Google Scholar

[5] Farrell, J., Kason, M., Melitas, N. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. Vol. 34(2000 ), p.514–521.

DOI: 10.1021/es990716y

Google Scholar

[6] Gu, C., Jia, H. Z., Li, H., Teppen, J. B., Boyd, A. S. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates, Environ. Sci. Technol. Vol. 11(2010 ), p.4258–4263.

DOI: 10.1021/es903801r

Google Scholar

[7] He, F., Zhao, D. Y. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Appl. Catal. B: Environ. Vol. 84(2008) , p.533–540.

DOI: 10.1016/j.apcatb.2008.05.008

Google Scholar

[8] ia, H.Z., Gu, C., Boyd, S.A., Teppen, B.J., Johnston, C.T. Song, C., Li, H. Comparison of Reactivity of Nano-scaled Zero-Valent Iron Formed on Clay Surfaces, Soil Sci. Soc. America. J. Vol. 75(2010) , p.357−364.

DOI: 10.2136/sssaj2010.0080nps

Google Scholar

[9] Jiao, Y.L., Qiu, C.C., Huang, L.H., Wu, K., Ma, H., Chen, S.H., Ma, L.M., Wu, D.L. Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion. Appl. Catal. B: Environ. Vol. 91( 2009 ), p.434−440.

DOI: 10.1016/j.apcatb.2009.06.012

Google Scholar

[10] Klausen, J., Ranke, J., Schwarzenbach, R. P. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron. Chemosphere. Vol. 44(2001), p.511–517.

DOI: 10.1016/s0045-6535(00)00385-4

Google Scholar

[11] Li, X.Q., Zhang, W.X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Solid State Mater. Sci. Vol. 31 (2006) , p.111–122.

DOI: 10.1080/10408430601057611

Google Scholar

[12] Liu, Y. Q., Lowry, V. G. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ. Sci. Technol. Vol. 40(2006) , p.6085–6090.

DOI: 10.1021/es060685o.s001

Google Scholar

[13] Liu, Y. Q., Majetich, S., Tilton, R., Sholl, D., Lowry, V. G. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. Vol. 39(2005) , p.1338–1345.

DOI: 10.1021/es049195r

Google Scholar

[14] Lowry, V. G., Johnson, K. M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. Vol. 38(2004), p.5208–5216.

DOI: 10.1021/es049835q

Google Scholar

[15] Miyazaki, A., Amano, T., Saito, H., Nakano, Y. Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms. Chemosphere. Vol. 47( 2002), p.65–69.

DOI: 10.1016/s0045-6535(01)00286-7

Google Scholar

[16] US EPA, 2004. http: /www. epa. gov/safewater.

Google Scholar

[17] Wei, J. J., Xu, X. H., Liu, Y., Wang, D. H. Catalytic hydrodechlorination of 2, 4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and some experimental parameters, Water Res. Vol. 40(2006), p.348–354.

DOI: 10.1016/j.watres.2005.10.017

Google Scholar

[18] Zhang, W. X. Nanoscale iron particles for environmental remediation: overview. J. Nanopart. Res. Vol. 5(2003), p.323–332.

Google Scholar

[19] Zhang, W. X., Wang, C. B., Lien, H. L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today. Vol. 40(1998), p.387–395.

DOI: 10.1016/s0920-5861(98)00067-4

Google Scholar