Source Apportionment of Particulate Matter Based on Carbon Isotope Mass Balance Model

Article Preview

Abstract:

In the process of source apportionment for particulate matter by mass balance model, the colinearity between various source profiles leads to the different analyzing results. For this reason, carbon isotopic apportionment based on the difference in carbon isotopic composition of particulate from different sources was put forward in this study. On the basis of chemical mass balance model, carbon isotope mass balance model is built to discriminate the sources including soil dust, coal dust and vehicle exhaust dust. This improved method has been used in the source apportionment of particulate in Taiyuan, and the results showed that the contributions of vehicle exhaust dust, coal dust and soil dust to air particulate in Taiyuan are 45%,13% and 18% respectively in heating season, while 23%,21% and16% in non-heating season. Therefore, the control of ash fly from burning coal is a long-term and arduous task.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1565-1569

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.G. Watson, T. Zhu, J.C. Chow, J.P. Engelbrecht, E.M. Fujita, W.E. Wilson: Chemosphere, Vol. 49 (2002), p.1093.

Google Scholar

[2] J.G. Watson, J.C. Chow, S.D. Kohl, H. Kuhns, N.F. Robinson. Annual report for the robbins particulate study . DRI, October26, (1999).

Google Scholar

[3] D.H. Lowenthal, J.C. Chow, J.G. Watson, G.R. Neuroth, N.F. Robinson: Atmos. Environ. Vol. 26A (1992), p.2341.

Google Scholar

[4] R.C. Henry: Atmos. Environ. Vol. 26A (1992), p.933.

Google Scholar

[5] L. Peng, H.M. Zhang, L.P. Chang, F. Li, Z.F. Ren, L. Mu, R.L. Shi: Chin. Scie. Bull. Vol. 54 (2009), p.1422.

Google Scholar

[6] V.P. O'malley, R.A. Burke, W.S. Schlotzhauer: Org. Geochem. Vol. 27 (1997), p.567.

Google Scholar

[7] T. Okuda, H. Kumata, H. Naraoka, H. Takada: Org. Geochem. Vol. 33 (2002), p.1737.

Google Scholar

[8] T. Okuda, H. Kumata, M.P. Zakariariac, H. Naraoka, R. Ishiwatari, H. Takada : Atmos. Environ. Vol. 36 (2002), p.611.

Google Scholar

[9] W. Liu, Y. Li, Z.Y. Xu, W.W. Wu, J. Lin, G.H. Wang: China Powder Sci. Technol. Vol. 15 (2009), p.23(In chinese).

Google Scholar

[10] G. Liu, X.X. Zhang, W.L. Teng, H. Yang: Chin. Scie. Bull. Vol. 52 (2007), p.1935(In chinese).

Google Scholar

[11] H. Hang, S.C. Li, J.J. Cao, C.W. Zou, X.G. Chen, S.J. Fan: Journal of south china normal university, Vol. 4 (2007), p.85(In chinese).

Google Scholar

[12] V.P. O'malley, T.A. Abrajano, J. Hellou: Org. Geochem. Vol. 21 (1994), p.809.

Google Scholar

[13] C. Liousse, J.E. Penner, C. Chuang, J.J. Walton, H. Eddleman, H. Cachier: J. Geophys. Res. Vol. 101 (1996), p.19411.

DOI: 10.1029/95jd03426

Google Scholar

[14] D.G. Streets, S. Gupta S.T. Waldho, M.Q. Wang T.C. Bond, Y.Y. Bo: Atmos. Environ. Vol. 35 (2001), p.4281.

Google Scholar