Conceivable Bioremediation Techniques Based on Quorum Sensing

Article Preview

Abstract:

Quorum sensing(QS) is a mechanism of microbes to coordinate their activities, which allows them to function as multi-cellular systems. Recently, many researches have proved that the engineered QS system have a wide range of applications such as bioremediation of oil and heavy metal contaminated soils, and prevention of biofouling. Here we review the function of QS signals produced by bacteria, and the principle of enhancing degradative capacities of microbe. Specifically, we describe how QS system regulate the formation and dispersion of biofilms, which are reversible process that biofilms may be generated and removed as desired. The development of strategies to disrupt and manipulate QS are also implicated. Cells can be engineered to secrete QS signals to affect the behavior of neighboring cells in a consortium via engineered cellular communication. The complete genetic basis of QS may be used to control these communities of associated cells for bioremediation applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Mehta, S. Goyal, T. Long, B.L. Bassler, N.S. Wingreen, Mol Syst Biol, 5 (2009) 325.

Google Scholar

[2] V. Paliwal, S. Puranik, H.J. Purohit, Appl Biochem Biotechnol, 166 (2012) 903-924.

Google Scholar

[3] N. Huma, P. Shankar, J. Kushwah, A. Bhushan, J. Joshi, T. Mukherjee, S. Raju, H.J. Purohit, V.C. Kalia, J Microbiol Biotechnol, 21 (2011) 1001-1011.

Google Scholar

[4] D. Stankowska, G. Czerwonka, S. Rozalska, M. Grosicka, J. Dziadek, W. Kaca, Folia Microbiol (Praha), 57 (2012) 53-60.

DOI: 10.1007/s12223-011-0091-4

Google Scholar

[5] S. Atkinson, P. Williams, J R Soc Interface, 6 (2009) 959-978.

Google Scholar

[6] T.K. Wood, S.H. Hong, Q. Ma, Trends Biotechnol, 29 (2011) 87-94.

Google Scholar

[7] Y.S. Kang, W. Park, J Appl Microbiol, 109 (2010) 1650-1659.

Google Scholar

[8] Y.T. Horng, S.C. Deng, M. Daykin, P.C. Soo, J.R. Wei, K.T. Luh, S.W. Ho, S. Swift, H.C. Lai, P. Williams, Mol Microbiol, 45 (2002) 1655-1671.

DOI: 10.1046/j.1365-2958.2002.03117.x

Google Scholar

[9] P. Williams, M. Camara, Curr Opin Microbiol, 12 (2009) 182-191.

Google Scholar

[10] M.M. Muller, J.H. Kugler, M. Henkel, M. Gerlitzki, B. Hormann, M. Pohnlein, C. Syldatk, R. Hausmann, J Biotechnol, (2012).

Google Scholar

[11] S.K. Satpute, S.S. Bhuyan, K.R. Pardesi, S.S. Mujumdar, P.K. Dhakephalkar, A.M. Shete, B.A. Chopade, Adv Exp Med Biol, 672 (2010) 14-41.

DOI: 10.1007/978-1-4419-5979-9_2

Google Scholar

[12] E.C. Pesci, J.B. Milbank, J.P. Pearson, S. McKnight, A.S. Kende, E.P. Greenberg, B.H. Iglewski, Proc Natl Acad Sci U S A, 96 (1999) 11229-11234.

DOI: 10.1073/pnas.96.20.11229

Google Scholar

[13] A.Y. Kuniho Nakata, Yasuhiro Yamada, Journal of Fermentation and Bioengineering, 86 (1998) 608-610.

Google Scholar

[14] M. Cha, N. Lee, M. Kim, S. Lee, Bioresour Technol, 99 (2008) 2192-2199.

Google Scholar

[15] Y. Gao, C. Miao, Y. Wang, J. Xia, P. Zhou, Environ Technol, 33 (2012) 1383-1389.

Google Scholar

[16] R. Singh, D. Paul, R.K. Jain, Trends Microbiol, 14 (2006) 389-397.

Google Scholar

[17] S. Kjelleberg, S. Molin, Curr Opin Microbiol, 5 (2002) 254-258.

Google Scholar

[18] M.R. Parsek, E.P. Greenberg, Trends Microbiol, 13 (2005) 27-33.

Google Scholar

[19] M. Labbate, S.Y. Queck, K.S. Koh, S.A. Rice, M. Givskov, S. Kjelleberg, J Bacteriol, 186 (2004) 692-698.

DOI: 10.1128/jb.186.3.692-698.2004

Google Scholar

[20] A. Puskas, E.P. Greenberg, S. Kaplan, A.L. Schaefer, J Bacteriol, 179 (1997) 7530-7537.

Google Scholar

[21] N.R. Stanley, R.A. Britton, A.D. Grossman, B.A. Lazazzera, J Bacteriol, 185 (2003) 1951-(1957).

Google Scholar

[22] J. Domka, J. Lee, T. Bansal, T.K. Wood, Environ Microbiol, 9 (2007) 332-346.

Google Scholar

[23] A. Pai, Y. Tanouchi, C.H. Collins, L. You, Curr Opin Biotechnol, 20 (2009) 461-470.

Google Scholar

[24] J. Lee, T. Bansal, A. Jayaraman, W.E. Bentley, T.K. Wood, Appl Environ Microbiol, 73 (2007) 4100-4109.

Google Scholar

[25] R.J. t. Emerson, T.A. Camesano, Appl Environ Microbiol, 70 (2004) 6012-6022.

Google Scholar

[26] K.M. Yeon, W.S. Cheong, H.S. Oh, W.N. Lee, B.K. Hwang, C.H. Lee, H. Beyenal, Z. Lewandowski, Environ Sci Technol, 43 (2009) 380-385.

DOI: 10.1021/es8019275

Google Scholar

[27] V.C. Kalia, S.C. Raju, H.J. Purohit, Open Microbiol J, 5 (2011) 1-13.

Google Scholar

[28] S.M. Olsen, L.T. Pedersen, M.H. Laursen, S. Kiil, K. Dam-Johansen, Biofouling, 23 (2007) 369-383.

DOI: 10.1080/08927010701566384

Google Scholar

[29] S. Dobretsov, M. Teplitski, V. Paul, Biofouling, 25 (2009) 413-427.

Google Scholar