Elaboration and Pore Size Control of Macro Porous Carbonized Material by Pyrolysis of Resin/Carbon Composite

Article Preview

Abstract:

Our purpose aims to introduce a contribution to the water filtration field with a potentially low cost carbon membrane. Porous carbonized material were prepared with predefined porosity of 0.1µm to be used as a support for nanofiltration and microfiltration membranes A composite material has been prepared by incorporation of activated carbon powder in a thermosetting resin, which underwent later a heat treatment under nitrogen atmosphere. The size of pores forming in the solids were controlled by varying different parameters such as pyrolysis temperature , pore forming agent added, carbon particle size and the resin matrix type. The results showed, that the homogenization of the resin/carbon composite pore size after pyrolysis was significantly related to activated carbon grain size. However, Pyrolysis temperature, pore forming agent content , thermosetting resin type were shown also to influence pore size of pyrolyzed material but play no role in pore size homogenization. It is important to mention here that pores size of carbonaceous material synthesized from epoxy resin is smaller than that synthesized from phenolic resin for the same particle size of activated carbon powder. Mechanical tests (3 point bending) and pore size measurements of 0.1 µm support have revealed that the flexural strength and porosity levels of 0.1 um supports based on epoxy resins are higher than their counterparts based on phenolic ones ( flexural strength of 71.62 MPa against 59.12MPa and porosity level of 29% against 21%).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

393-402

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. M Biesheuvel, H. Verweij. J. Membr. Sc. 156 (1999), p.141.

Google Scholar

[2] C. Falamaki, M. Naimi, A. Aghaie. J. Eur. Ceram. Soc. 24 (2004), p.3195.

Google Scholar

[3] N. Saffaj, S.A. Younssi, A. Albizane, A. Messouadi, M. Bouhria, M. Persin, M ; Cretin, A. Larbot, Sep; Purif. Technol. 36 (2004)., p.107.

DOI: 10.1016/j.desal.2004.07.006

Google Scholar

[4] Y.H. Wang, Y. Zhang, X.Q. Liu, G.Y. Meng, Powder Technol. 168 (2006), p.125.

Google Scholar

[5] S. Masmoudi, A. Larbot, H.E. Feki, R.B. Amar, Ceram. Int. 33 (2007), p.337.

Google Scholar

[6] Adalgisa Tavolaro and EnricoDrioli, Advanced materials 11(12) (1999), p.975.

Google Scholar

[7] Jianer Zhou Xiao Zhen Yongqing Wang, A. Larbot , Xuebing Hu, Journal Porous Materials 17 (2010), p.1.

Google Scholar

[8] Toshihide Horikawa, Keiko Ogawa, Katsuhiko Mizuno, Jun ichi Hayashi, Katsuhiko Muroyama, Carbon 41 (2003), p.465.

Google Scholar

[9] Wei Wei, Guotong QM, Haoquan, Longbo You, Guohua Chen, Journal of Membrane Science 303 (2007), p.80.

Google Scholar

[10] Wei Wei, Haoquan and al; Wei Wei, Haoquan, Longbo You, Carbon 42 (2004), p.667.

Google Scholar

[11] A.B. Fuertes. C.A. Centeno; Journal of Membrane Science 144 (1998), p.105.

Google Scholar

[12] Nanda Kishore, Shadhana Schan, K. N. Rai, A. Kumar carbon 41 (2003), p.2961.

Google Scholar

[13] Strano. MS, Zydney AL, Barth H, Wooler G, Agarwal H, Foley HC, Journal of Membrane Science 198 (2002), p.173.

DOI: 10.1016/s0376-7388(01)00574-9

Google Scholar

[14] K. Kanno, J.J. Fernandez, F. Fortin, Y. Korai, I. Mochida, Carbon35 (1997), p.1627.

Google Scholar

[15] S. Sojka, R.A. Wolfe, C.D. Guenther, Macromolecules 14 (1981), p.1539.

Google Scholar

[16] Yingchao Dong, Xuyong Feng, Dehua Dong, Songlin Wang, Jiakui Yang , Jianfeng Gao, Xingqin Liu, Guangyao Meng, Journal of Membrane Science 304 (2007), p.65.

Google Scholar

[17] Loey.A. Salam, Richard D. Matthews, Hugh Robertson, Journal of the European Society 20, (2000), p.1375.

Google Scholar

[18] A.K. Dhaliwal, J.N. Haz; Thermochimica Acta 391(1-2) 245 (2002).

Google Scholar

[19] J. M Bauer, J. Elyassini, G. Moncorge, T. Nodari, E. Totino, Key Engng Mater 61, 207 (1991).

DOI: 10.4028/www.scientific.net/kem.61-62.207

Google Scholar

[20] A.S. Damle, S.K. Gangwal, V.K. Venkaaraman, Gas Sep. Purif. 8(3) 137 (1994).

Google Scholar

[21] N. Grassie, M.I. Guy, N.H. Tennent, Polymer Degrad. Stab, 14 (1986), p.125.

Google Scholar

[22] H.P.S. Abdul Khalil, P. Firoozian, I.O. Bakare, Hazizan Md, Akil, Ahmad Md. Noor Materials and Design 31 (2010), p.3419.

DOI: 10.1016/j.matdes.2010.01.044

Google Scholar

[23] M. Dumont, M. -A. Dourges, X. Bourrat, R. Pailler, R. Naslain, O. Babot , M. Birot, J.P. Pillot, Carbon 43 (2005), p.2277.

DOI: 10.1016/j.carbon.2005.04.007

Google Scholar

[24] Xiaoqing zhang, Sarah Khor, Dachao gao, Elaine Sum, Materials Chemistry and physics 131 (2012), p.735.

Google Scholar

[25] Maria Paola Luda,A. I, Balabanovich, M. Zanetti, Journal of Analytical and Applied Pyrolysis 88 (2010), p.39.

Google Scholar

[26] Wenchao Zhang, Xiangmei Li, Rongjie Yang, ), Polymer Degradation and Stability 96(2011)p.1821.

Google Scholar

[27] Luc Vincent, Alice Nicolas Sbirrazzuoli. Polymer Degradation and Stability , 92 (2007), p. (2051).

Google Scholar

[28] Oya A. Editors H. Mash EA Heintz and Frodriguez-Reinoso/(1997).

Google Scholar

[29] H. Schumacher, E. Preuss, D. Zundorf, W. Hodek, I. Romey. US Patent 4261832. (1981).

Google Scholar

[30] Shunjian Xu, Guanjun Qiao, Hongjie Wang, Dichen Li, Tianjian Lu. l. Materials letters 62 (2008), p.3716.

Google Scholar

[31] H.P.S. Abdul Khalil, M.M. Marliana, A.M. Issam, I.O. Bakare. Exploring. Materials and design 32 (2011), p.2604.

DOI: 10.1016/j.matdes.2011.01.035

Google Scholar

[32] T.A. Centeno , A.B. Fuertes, Journal memb. Sci. 160 (1999), p.205.

Google Scholar

[33] T.A. Centeno , A.B. Fuertes, Sep. Purify. Tech. 25 (2001), p.379.

Google Scholar

[34] A. Knop, L.A. Pilato, Phenolic resins: Chemistry, Applications and Performance, FutureDirections. Heidelberg: Springer, (1985).

Google Scholar

[35] Kopf PW, Little AD. Phenokic resin . In: Kirk-Othmar encyclopaedia of chemical technology, vol. 18. New Work: John Wiley, (1991), p.603.

Google Scholar