[1]
the Shilin lock, Zhang Yazhou, MI Wen Peng WVD spectral kurtosis bearing fault diagnosis [J]. Vibration, testing and diagnosis, 2011, 01.
Google Scholar
[2]
to five-star, Xuan Jianping, AEROSPACE. Wigner-Ville, the frequency distribution of the research and its application [J] gear fault diagnosis of Vibration Engineering, 2003 (2).
Google Scholar
[3]
Chapter bit. Lu Yongxiang wigner spectrum reciprocating machinery monitoring [J]. Mechanical Science and Technology, 1994 (1).
Google Scholar
[4]
Dejie Yu, Yu Yang, Junsheng Cheng. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis[J]. Measurement 40 (2007) 823-830.
DOI: 10.1016/j.measurement.2007.03.004
Google Scholar
[5]
Wen-Chang Tsao, Yi-Fan Li, Duc Du Le, Min-Chun Pan. An insight concept to select appropriate IMFs for envelope analysis of bearing fault diagnosis[J]. Measurement 45 (2012) 1489-1498.
DOI: 10.1016/j.measurement.2012.02.030
Google Scholar
[6]
T.Y. Wu, J.C. Chen, C.C. Wang. Characterization of gear faults in variable rotating speed using Hilbert-Huang Transform and instantaneous dimensionless frequency normalization[J]. Mechanical Systems and Signal Processing 30 (2012) 103-122.
DOI: 10.1016/j.ymssp.2012.01.022
Google Scholar
[7]
Zhang Xining gear fault diagnosis in the purification of the vibration signal and reconstruction [J]. Xi'an Jiaotong University, 1998 (9).
Google Scholar
[8]
Zhongfa Xiang, Hoi-Yun. Transient frequency fluctuation Law diagnostic gear failure [J]. Vibration and shock, 1996 (1).
Google Scholar
[9]
Yu Ji, HAN Qing large, Li Shen, et al. Equipment fault diagnosis engineering [M] Beijing: Metallurgical Industry Press, 2001: 689.
Google Scholar
[10]
HUANG NE, SHEN Z, LONG SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, A, 1998, 454: 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[11]
Boudraa, A., Cexus, J.C., Salzenstein, F. and L. Guillon. IF estimation using empirical mode decomposition and nonlinear Teager energy operator[J] . First International Symposium on Control, Communications and Signal Processing, Hammamet, Tunisia, 2004: 45-48.
DOI: 10.1109/isccsp.2004.1296215
Google Scholar