[1]
Pai-Hui Hsu, Yi-Hsing Tseng. Feature extraction for hyper spectralimage[A]. In: Proceedings of the 20th Asian Conference on Remote Sensing[C]. Hong Kong: JLGIS, 1999. 405-410.
DOI: 10.1109/igarss.2002.1026215
Google Scholar
[2]
Mallet Y, Coomans D, de Vel O. Recent developments in discriminant analysis on high dimensional spectral data[J]. Journal of Chemometrics and Intelligent Laboratory Systems, 1996, 11: 157-173.
DOI: 10.1016/s0169-7439(96)00050-0
Google Scholar
[3]
Shah CA, AroraMK, Robila SA, et al. ICA mixture model based unsupervised classification of hyperspectral imagery [A]. 31st Applied Imagery Pattern Recognition Workshop, 2002. Proceedings[C]. 2002. 29~35.
DOI: 10.1109/aipr.2002.1182251
Google Scholar
[4]
Luis O. Jiménez, Jorge L. Rivera-Medina, Eladio Rodríguez-Díaz, et al. Integration of Spatial and Spectral Information by Means of Unsupervised Extraction and Classification for Homogenous Objects Applied to Multispectral and Hyperspectral Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 844-851.
DOI: 10.1109/tgrs.2004.843193
Google Scholar
[5]
L. O. Jimenez, J. Rivera, On the integration of spatial and spectral information in unsupervised classification for multi-spectral and hyper-spectral data[C]. SPIE Conf., Florence, Italy, (1999).
Google Scholar
[6]
B. Scholkopf, Smola, A., Mu11er, K.R. Nonlinear Component Analysis as Kernel Eigenvalue Problem. Technical Report No. 44[J]. Max-Planck-Institut biologische Kybernetik, Tubingen Neural Computation 1996, 10(5): 1299-1319.
DOI: 10.1162/089976698300017467
Google Scholar