Tracking Control of an Uncertain MEMS Resonator via Adaptive Terminal Sliding Mode Control

Article Preview

Abstract:

The purpose of this study is to develop the adaptive terminal sliding mode scheme to control a MEMS resonator with a six-powered potential function for tracking a given reference signal in the presence of system uncertainties and external disturbances. The proposed adaptive controller includes the time-varying feedback gains can tackle the nonlinear dynamics without directly eliminating. Meanwhile, these time-varying feedback gains are adaptively updated according to the suitable updated rules without the known bounds of system uncertainties and external disturbances. Some sufficient conditions to guarantee the stability based on Lyapunov theory and numerical simulations are performed to demonstrate the effectiveness of the presented scheme.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

665-670

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Xie, G. Fedder, Vertical comb-finger capacitive actuation and sensing for coms-MEMS, Sensors Actuators A 95, 212 (2002).

DOI: 10.1016/s0924-4247(01)00740-3

Google Scholar

[2] M. I. Younis, A. H. Nayfeh, A study of the nonlinear response of a resonant microbeam to an electric actuation, Nonlinear Dyn. 31, 91 (2003).

Google Scholar

[3] S. Liu, A. Davidson, Q. Lin, Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system, J. Micromechan Microeng 14, 1064 (2004).

DOI: 10.1088/0960-1317/14/7/029

Google Scholar

[4] H. S. Haghighi, A. H. D. Markazi, Chaos prediction and control in MEMS resonators, Commun. Nonlinear Sci. Numer. Simul. 15, 3091 (2010).

DOI: 10.1016/j.cnsns.2009.10.002

Google Scholar

[5] M. M. Siewe, U. H. Hegazy, Homoclinic bifurcation and chaos control in MEMS resonators, Applied Mathematical Modeling 35, 5533 (2011).

DOI: 10.1016/j.apm.2011.05.021

Google Scholar

[6] A. Luo, F.Y. Wang, Chaotic motion in a micro-electro-mechanical system with non-linearity from capacitors, Commun. Nonlinear Sci. Numer. Simul. 7, 31 (2002).

DOI: 10.1016/s1007-5704(02)00005-9

Google Scholar

[7] F. R. Chavarette, J. M. Balthazar, J. L. P. Felix, M. Rafikov, A reducing of a chaotic movement to a periodic orbit of a micro-electro-mechanical system by using an optimal linear control design, Commun. Nonlinear Sci. Numer. Simul. 14, 1844 (2009).

DOI: 10.1016/j.cnsns.2008.09.003

Google Scholar

[8] E. Barry, M. De, E. Butterfield, J. Moehlis, K. Turner, Complex nonlinear oscillations in electrostatically actuated microstructures, J. Microelectromech. Syst. 16, 1314 (2007).

Google Scholar

[9] H. T. Yau, C. C. Wang, C. T. Hsieh, C. C. Cho, Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design, Computer and Mathematics with Appliction, 61, 1912 (2011).

DOI: 10.1016/j.camwa.2010.07.019

Google Scholar

[10] V. I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin (1992).

Google Scholar

[11] Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica 38, 2159 (2002).

DOI: 10.1016/s0005-1098(02)00147-4

Google Scholar