[1]
Kotowicz, J., Bartela, Ł. The influence of the legal and economical environment and the profile of activities on the optimal design features of a natural-gas-fired combined heat and power plant, Energy, 36 (1), pp.328-338, (2011).
DOI: 10.1016/j.energy.2010.10.035
Google Scholar
[2]
G. Gottlicher and R. Pruschek, Comparison of co2 removal systems for fossil-fuelled power plant processes, Energy Conversion and Management 38(0), pp. S173–S178, (1997).
DOI: 10.1016/s0196-8904(96)00265-8
Google Scholar
[3]
W. M. Budzianowski, An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane, International Journal of Hydrogen Energy 35(14), p.7454–7469, (2010).
DOI: 10.1016/j.ijhydene.2010.04.178
Google Scholar
[4]
G. Wiciak and J. Kotowicz, Experimental stand for co2 membrane separation, Journal of Power Technologies 91(4), p.171–178, (2011).
Google Scholar
[5]
E. J. Granite and T. O'Brien, Review of novel methods for carbon dioxide separation from flue and fuel gases, Fuel Processing Technology 86(14-15), p.1423 – 1434, (2005).
DOI: 10.1016/j.fuproc.2005.01.001
Google Scholar
[6]
J. Milewski, M. Wołowicz, K. Badyda, and Z. Misztal, 36 kw polymer exchange membrane fuel cell as combined heat and power unit, ECS Transactions 42(1), p.75–87, 2012. cited By (since 1996) 0.
DOI: 10.1149/1.4705482
Google Scholar
[7]
W. Wu and J. -J. Luo, Nonlinear feedback control of a preheater-integrated molten carbonate fuel cell system, Journal of Process Control 20(7), p.860–868, (2010).
DOI: 10.1016/j.jprocont.2010.05.005
Google Scholar
[8]
D. Sanchez, R. Chacartegui, J. M. de Escalona, A. Munoz, and T. Sanchez, Performance analysis of a MCFC & supercritical carbon dioxide hybrid cycle under part load operation, International Journal of Hydrogen Energy 36(16), p.10327 – 10336, (2011).
DOI: 10.1016/j.ijhydene.2010.09.072
Google Scholar
[9]
H. Zhang, G. Lin, and J. Chen, Performance analysis and multi-objective optimization of a new molten carbonate fuel cell system, International Journal of Hydrogen Energy 36(6), p.4015–4021, (2011).
DOI: 10.1016/j.ijhydene.2010.12.103
Google Scholar
[10]
J. -H. Wee, Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources, Applied Energy 88, p.4252–4263, (2011).
DOI: 10.1016/j.apenergy.2011.05.043
Google Scholar
[11]
A. Lanzini, M. Santarelli, and G. Orsello, Residential solid oxide fuel cell generator fuelled by ethanol: Cell, stack and system modelling with a preliminary experiment, Fuel Cells 10(4), p.654–675, (2010).
DOI: 10.1002/fuce.201000004
Google Scholar
[12]
J. Kupecki and K. Badyda, SOFC-based micro-CHP system as an example of efficient power generation unit, Archives of Thermodynamics 32(3), p.33–43, (2011).
DOI: 10.2478/v10173-011-0011-7
Google Scholar
[13]
J. Milewski, K. Świrski, M. Santarelli, and P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling, Springer-Verlag London Ltd., 1 ed., March (2011).
DOI: 10.1007/978-0-85729-262-9
Google Scholar
[14]
L. Blum, R. Deja, R. Peters, and D. Stolten, Comparison of efficiencies of low, mean and high temperature fuel cell systems, International Journal of Hydrogen Energy 36(17), p.11056 – 11067, (2011).
DOI: 10.1016/j.ijhydene.2011.05.122
Google Scholar
[15]
F. Al-Sulaiman, I. Dincer, and F. Hamdullahpur, Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic rankine cycle, International Journal of Hydrogen Energy 35(10), p.5104–5113, (2010).
DOI: 10.1016/j.ijhydene.2009.09.047
Google Scholar
[16]
H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, and S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kW MCFC power plant, International Journal of Hydrogen Energy 37(15), p.11394.
DOI: 10.1016/j.ijhydene.2012.04.135
Google Scholar
[17]
C. -G. Lee, D. -H. Kim, and H. -C. Lim, Electrode reaction characteristics under pressurized conditions in a molten carbonate fuel cell, Journal of the Electrochemical Society 154(4), pp. B396–B404, 2007. cited By (since 1996) 1.
DOI: 10.1149/1.2434688
Google Scholar
[18]
S. Campanari, Carbon dioxide separation from high temperature fuel cell power plants, Journal of Power Sources 112(1), p.273 – 289, (2002).
DOI: 10.1016/s0378-7753(02)00395-6
Google Scholar
[19]
S. Campanari, P. Chiesa, and G. Manzolini, Co2 capture from combined cycles integrated with molten carbonate fuel cells, International Journal of Greenhouse Gas Control 4(3), p.441 – 451, (2010).
DOI: 10.1016/j.ijggc.2009.11.007
Google Scholar
[20]
A. Amorelli, M. B. Wilkinson, P. Bedont, P. Capobianco, B. Marcenaro, F. Parodi, and A. Torazza, An experimental investigation into the use of molten carbonate fuel cells to capture co2 from gas turbine exhaust gases, Energy 29(9-10), p.1279 – 1284, (2004).
DOI: 10.1016/j.energy.2004.03.087
Google Scholar
[21]
M. Lusardi, B. Bosio, and E. Arato, An example of innovative application in fuel cell system development: Co2 segregation using molten carbonate fuel cells, Journal of Power Sources 131(1-2), p.351 – 360, (2004).
DOI: 10.1016/j.jpowsour.2003.11.091
Google Scholar
[22]
K. Sugiura, K. Takei, K. Tanimoto, and Y. Miyazaki, The carbon dioxide concentrator by using mcfc, Journal of Power Sources 118(1-2), p.218 – 227, (2003).
DOI: 10.1016/s0378-7753(03)00084-3
Google Scholar
[23]
J. Milewski, J. Lewandowski, and A. Miller, Reducing CO2 emissions from a coal fired power plant by using a molten carbonate fuel cell, Chemical and Process Engineering 30(2), p.341–350, (2009).
DOI: 10.1115/gt2008-50100
Google Scholar
[24]
J. Milewski, J. Lewandowski, and A. Miller, Reducing CO2 emissions from a coal fired power plant by using a molten carbonate fuel cell, in ASME Turbo EXPO, Proceedings of the ASME Turbo Expo 2, p.389–395, (2008).
DOI: 10.1115/gt2008-50100
Google Scholar
[25]
J. Milewski, A. Miller, and J. Lewandowski, The reduction of CO2 emission of coal fired power plant by using a molten carbonate fuel cell, in Tenth Grove Fuel Cell Symposium, p. [P9], (2007).
DOI: 10.1115/gt2008-50100
Google Scholar
[26]
J. Milewski, J. Sałacinski, and A. Miller, The reduction of CO2 emission of gas turbine power plant by using a molten carbonate fuel cell, in ASME Turbo EXPO 2007, (Montreal, Canada), (2007).
DOI: 10.1115/gt2007-27030
Google Scholar
[27]
J. Milewski, J. Salacinski, and A. Miller, The reduction of co2 emission of gas turbine power plant by using a molten carbonate fuel cell, ASME Paper GT2007(27030), (2007).
DOI: 10.1115/gt2007-27030
Google Scholar
[28]
J. Milewski, J. Lewandowski, and A. Miller, Reducing CO2 emissions from a gas turbine power plant by using a molten carbonate fuel, Chemical and Process Engineering 29(4), p.939–954, (2008).
DOI: 10.1115/gt2008-50100
Google Scholar
[29]
J. Milewski, J. Lewandowski, and A. Miller, Possibilities of using a molten carbonate fuel cell for reduction of CO2 emission of gas turbine power plant, in VIII Problemy Badawcze Energetyki Cieplnej, (2007).
DOI: 10.1115/gt2007-27030
Google Scholar
[30]
J. Milewski, Fuel Cell Efficiency, hardcover Increasing the System Efficiency and Reducing CO2 Emissions by Installing a Molten Carbonate Fuel Cell in a Power Plant. Nova Publishers, (2011).
Google Scholar
[31]
J. Milewski, J. Lewandowski, and A. Miller, Reducing CO2 emission from fossil power plants by using a molten carbonate fuel cell, in 17th World Hydrogen Energy Conference, p.132, (2008).
DOI: 10.1115/gt2008-50100
Google Scholar
[32]
W. Jung-Ho, Contribution of fuel cell systems to co2 emission reduction in their application fields, Renewable and Sustainable Energy Reviews 14(2), p.735 – 744, (2010).
DOI: 10.1016/j.rser.2009.10.013
Google Scholar
[33]
P. Chiesa, S. Campanari, and G. Manzolini, Co2 cryogenic separation from combined cycles integrated with molten carbonate fuel cells, International Journal of Hydrogen Energy 36(16), p.10355 – 10365, (2011).
DOI: 10.1016/j.ijhydene.2010.09.068
Google Scholar
[34]
N. Xu, X. Li, M. A. Franks, H. Zhao, and K. Huang, Silver-molten carbonate composite as a new high-flux membrane for electrochemical separation of co2 from flue gas, Journal of Membrane Science , pp. –, (2012).
DOI: 10.1016/j.memsci.2012.02.001
Google Scholar