[1]
Information on http: /www. astrium-geo. com/terrasar-x.
Google Scholar
[2]
E. Attema, Y. -L. desnos, and G. Duchossois: Synthetic Aperture Radar in Europe: ERS, Envisat, and Beyond. Johns Hopkins APL technical digest, vol. 21(2000), pp.155-161.
Google Scholar
[3]
D. Small, F. Holecz, E. Meier, D. Nüesch, and A. Barmettler: Geometric and Radiometric Calibration of RADARSAT Images. Proc. of Geomatics in the Era of RADARSAT, Ottawa, Canada, May 24-30(1997).
Google Scholar
[4]
S. Perna, C. Wimmer, J. Moreira, G. Fornaro: Ground Deformation monitoring with the OrbiSAR System. SERFA(2008), pp.10-11.
Google Scholar
[5]
Information on http: /geosar. com.
Google Scholar
[6]
Information on http: /www. sandia. gov/radar/lynx. html.
Google Scholar
[7]
Information on http: /airsar. jpl. nasa. gov.
Google Scholar
[8]
B. Bräutigam, J. Hueso González, M. Schwerdt, and M. Bachmann. IEEE Trans. on geoscience and remote sensing, vol. 48 (2010), No. 2, pp.702-715.
Google Scholar
[9]
J. -Y. Hua and G. Zhang: Research on the methods of inner calibration of spaceborne SAR. IGARSS (2011), pp.914-916.
Google Scholar
[10]
A. Freeman. IEEE Trans. on geoscience and remote sensing, vol. 30 (1992), No. 6, pp.1107-1121.
Google Scholar
[11]
F. Holecz, E. Meier, J. Piesbergen, U. Wegmiiller, and D. Nuesch: Radiometric calibration of airborne SAR imagery. IGARSS(1994), pp.1096-1098.
DOI: 10.1109/igarss.1994.399354
Google Scholar
[12]
L. Yuan, J. Ge, K. Jiang, Y. Wang: Research on Efficient Calibration Techniques for Airborne SAR Systems. APSAR(2009), pp.266-269.
Google Scholar