Quantifying the Process of Ozonation Chemiluminescence on Determining Organic Matter Compositions

Article Preview

Abstract:

Although the ozonation chemiluminescence can be used to determine organic matter fractions (lipids, acid soluble fractions, acid insoluble fractions), the process is not clear, e.g., what is produced after the organic matter is oxidized by ozone (O3), how much product and reactant are in the ozonation, how to define the complete oxidation Aimed at resolving these questions, we designed an experiment. On the special equipment developed for the ozonation chemiluminescence studies, two instruments of determining O3 concentrations and two flowmeters were installed to measure the input and output amount of O3 and the amount of O3 consumed can be calculated. Results showed that 1) acid insoluble fractions are oxidized to lipids and acid insoluble fractions; 2) the amount of the product is determined by the amount of reactant and consumed O3 ( ); 3) when the reactant is as result 2), the oxidation is complete, or when the organic matter fractions are stable after ozonation, the oxidation is complete. Further study should test the process at the molecular level.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2593-2597

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.S. Schimel: Glob. Chang. Biol. Vol. 1 (1995), p.77.

Google Scholar

[2] S. Bokhorst, A. Huiskes, P. Convey and R. Aerts: Glob. Chang. Biol. Vol. 13 (2007), p.2642.

Google Scholar

[3] R.T. Conant, R.A. Drijber, M.L. Haddix, W.J. Parton, E.A. Paul, A.F. Plante, J. Six and M. Steinweg: Glob. Chang. Biol. Vol. 14 (2008), p.868.

DOI: 10.1111/j.1365-2486.2008.01541.x

Google Scholar

[4] K.S. Pregitzer, A.J. Burton, D.R. Zak and A.F. Talhelm: Glob. Chang. Biol. Vol. 14 (2008), p.142.

Google Scholar

[5] J.A. Bird, M. Kleber and M.S. Torn: Org. Geoch. Vol. 39 (2008), p.465.

Google Scholar

[6] S. Hill, S. Stark and J. Derome: Ecosystems Vol. 11 (2008), p.270.

Google Scholar

[7] F.S. Chapin III, P.A. Matson and H.A. Mooney, in: Principles of Terrestrial Ecosystem Ecology, Springer-Verlag, New York (2002).

Google Scholar

[8] D.L. Moorhead and R.L. Sinsabaugh: Ecol. Mon. Vol. 76 (2006), p.151.

Google Scholar

[9] S. Fontaine, S. Barot, P. Barré, N. Bdioui, B. Mary and C. Rumpel: Nature Vol. 450 (2007), p.277.

DOI: 10.1038/nature06275

Google Scholar

[10] J.J. Hendricks, J.D. Aber, K.J. Nadelhoffer and R.D. Hallett: Ecosystems Vol. 3 (2000), p.57.

Google Scholar

[11] I. Kögel-Knabner: Soil Biol. Bioch. Vol. 34 (2002), p.139.

Google Scholar

[12] Y. Liu, P. Fan, G. Hou, J. Sun, Y. Cheng and R. Ma: Adv. Mat. Res. Vol. 468-471 (2012a), p.2842.

Google Scholar

[13] M. Liu, P. Fan, Y. Liu and L. Du: Adv. Mat. Res. Vol. 468-471 (2012b), p.1850.

Google Scholar

[14] R.G. Bulgakov, A.S. Musavirova, A.S. Abdrakhmanov, A.M. Abdrakhmanov, E. Yu. Nevyadovskii and S.L. Khursan: J. Appl. Spectr. Vol. 69 (2002), p.220.

DOI: 10.1023/a:1016133117469

Google Scholar

[15] T. Takayanagi and P.K. Dasgupta: Talanta Vol. 66 (2005), p.823.

Google Scholar

[16] L.V. Tkhi, V.V. Tarasov, Yu. I. Popov: Theor. Found. Chem. Engin. Vol. 43 (2009), p.846.

Google Scholar

[17] Y. Su, H. Chen, Z. Wang and Y. Lv: Appl. Spectr. Rev. Vol. 42 (2007), p.139.

Google Scholar

[18] C.M. Hindson, P.S. Francis, G.R. Hanson, J.L. Adcock and N.W. Barnett: Analyt. Chem. Vol. 82 (2010), p.4174.

Google Scholar

[19] M.G. Ryan, J.M. Melillo and A. Ricca: Can. J. For. Res. Vol. 20 (1990), p.166.

Google Scholar