[1]
Alexander F.H. Goetz. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 2009, 113(1): s5-s16.
DOI: 10.1016/j.rse.2007.12.014
Google Scholar
[2]
Bocai Gao, Marcos J. Montes, Curtiss O. Davis, Alexander F.H. Goetz. Atmospheric correction algorithms for hyper-spectral remote sensing data of land and ocean. Remote Sensing of Environment, 2009, 113 (1): s17-s24.
DOI: 10.1016/j.rse.2007.12.015
Google Scholar
[3]
Agterberg F P , Bonham-Carter G F, Cheng Q M, et al. 1993. Weights of Evidence Modeling and Weighted Logistic Regression for Mineral Potential Mapping[M]. In: Davis. J. C. and Herzfeld. U.C. (eds. ). Computers in Geology, 25 Years of Progress . London: Oxford University Press.
DOI: 10.1093/oso/9780195085938.003.0007
Google Scholar
[4]
Freek D. van der Meer, Harald M.A. van der Werff, Frank J.A. Multi- and hyper-spectral geologic remote sensing. International Journal of Applied Earth Observation and Geo-information, 2012, (14): 112-128.
DOI: 10.1016/j.jag.2011.08.002
Google Scholar
[5]
Rajesh H M. 2008. Mapping Proterozoic unconformity-related uranium deposits in the Rockhole area, Northern Territory, Australia using landsat ETM+[J]. Ore Geology Reviews, (33): 382–396.
DOI: 10.1016/j.oregeorev.2007.02.003
Google Scholar
[6]
Qihao Weng. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends Original Research Article. Remote Sensing of Environment, 2012, 112(11): 34-49.
DOI: 10.1016/j.rse.2011.02.030
Google Scholar
[7]
FabioRoli, Fumera G. 2001. Support Veetor Maehines for Remote Sensing Image Classifieation [J]. Proeeedings of SPIE, 4170: 160-66.
Google Scholar
[8]
Alexander F.H. Goetz. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sensing of Environment, 2009, 113Supplement (1): S5-S16.
DOI: 10.1016/j.rse.2007.12.014
Google Scholar
[9]
Elisabeth A. Addink, Frieke M.B. Van Coillie, Steven M. De Jong. Introduction to the GEOBIA 2010 special issue: From pixels to geographic objects in remote sensing image analysis. International Journal of Applied Earth Observation and Geoinformation, 2012(15): 1-6.
DOI: 10.1016/j.jag.2011.12.001
Google Scholar
[10]
Peter D. Hunter, Andrew N. Tyler, Mátyás Présing, Attila W. Kovács, Tom Preston. Spectral discrimination of phytoplankton colour groups: The effect of suspended particulate matter and sensor spectral resolution. Remote Sensing of Environment, 2008, 112(4) : 1527-1544.
DOI: 10.1016/j.rse.2007.08.003
Google Scholar
[11]
Collin G. Homer, Cameron L. Aldridge, Debra K. Meyer, Spencer J. Schell. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1): 233-244.
DOI: 10.1016/j.jag.2011.09.012
Google Scholar
[12]
Antonio Plaza, Jon Atli Benediktsson, Joseph W. Boardman, Jason Brazile, Lorenzo Bruzzone, Gustavo Camps-Valls, Jocelyn Chanussot, Mathieu Fauvel, Paolo Gamba, Anthony Gualtieri, Mattia Marconcini, James C. Tilton, Giovanna Trianni. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 2009, 113Supplement (1): S110-S122.
DOI: 10.1016/j.rse.2007.07.028
Google Scholar
[13]
Alan R. Wallace. 2004. Steve Ludington, Mark J, Mihalasky, et al. Assessment of Metallic Mineral Resources in the Humboldt River Basin[R]. Northern Nevada: USGS Bulletin.
Google Scholar
[14]
Coolbaugh.M. F and Bedell R A. 2006. Simplification of Weights of Evidence Using a Density Function and Fuzzy Distributions: Using Geothermal Systems in Nevada as an Example[C]. Geological Association of Canada Special Paper GIS applications in the Earth Sciences.
Google Scholar