Research on the Refractive-Index Gradient Sensor Based on Gaussian Apodized Fiber Bragg Grating under Uneven Medium

Article Preview

Abstract:

Based on the fiber waveguide theory and the transfer matrix method,Research on the reflection spectrum of Gaussian apodized FBG which cladding were completely corroded under uneven medium.During the stimulation process,consider high refractive-index(1.43-1.45) area and low refravtive area(1.33-1.36) respectively.At the same time,suppose the uneven SRI in different linear function distributions.The stimulation result shows the Gussian apodized FBG’s spectrum bandwidth,spectrum intensity depends on the SRI along the grating axial linear distribution gradient.As SRI gradient increases,the gradient sensitivity of high refractive index area and low refractive index area are nm.mm/riu and nm.mm/riu respectively.The results have a definite significance of Gaussian apodized FBG for sensing technology used in biochemical of uneven medium measurement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-91

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Marazuela and M. D. Moreno-Bondi. Fiber-optic biosensors–an overview [J]. Anal. Bioanal. Chem., 372: 664-682.

DOI: 10.1007/s00216-002-1235-9

Google Scholar

[2] Bennion, I. Zhang, L. Fiber Bragg grating technologies and applications in sensors [C]. Optical Fiber Communication Conference on 5-10 March 2006, p.3.

DOI: 10.1109/ofc.2006.215966

Google Scholar

[3] Kaiming Zhou, Xianfeng Chen et al. Implementation of optical chemsensors based on HF-etched fibre Bragg grating structures [J]. Meas. Sci. Technol., 17: 1140-1145.

DOI: 10.1088/0957-0233/17/5/s34

Google Scholar

[4] Chun-Liu Zhao, Xiu-feng Yang, M. S. Demokan et al. Simultaneous temperature and refractive index measurements using a 3◦ slanted multimode fiber Bragg grating [J]. J. Lightwave Technol., 24(2): 879-883.

DOI: 10.1109/jlt.2005.862471

Google Scholar

[5] D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang. Fibre-optic interferometricimmuno-sensor using long period grating [J]. Electronics Letters, 42(6): 324-325.

DOI: 10.1049/el:20060040

Google Scholar

[6] Bin-bin Luo, Xiao-jun Zhou, Ming-fu Zhao et al. Recent developments in microstructured fiber Bragg grating refractive index sensors [J]. 2010 Society of Photo-Optical Instrumentation Engineers, SPIE Reviews, 1: 018002-1~018002-12.

DOI: 10.1117/6.0000002

Google Scholar

[7] D. A. Pereira, O. Frazao, and J. L. Santos. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature [J]. Opt. Eng., 43, (2), 299–304.

DOI: 10.1117/1.1637903

Google Scholar

[8] Kerstin Schroeder, Wolfgang Ecke, Rudolf Mueller et al. A fibre Bragg grating refractometer [J]. Measurement Science and technology, 12, 757–764.

DOI: 10.1088/0957-0233/12/7/301

Google Scholar

[9] Na Chen, Binfeng Yun, Yiping Wang, and Yiping Cui. Theoretical and experimental study on etched fiber Bragg grating cladding mode resonances for ambient refractive index sensing [J]. J. Opt. Soc. Am. B, 24(3): 439-445.

DOI: 10.1364/josab.24.000439

Google Scholar

[10] M. Dagenais, A. N. Chryssis, et al. High sensitivity bio-sensor based on an etched core fiber Bragg grating [J]. OSA Conf. Integrated Photon. Res. Appl. 4, IWD3.

DOI: 10.1364/ipra.2005.iwd3

Google Scholar

[11] Sang-Mae Lee, Myung-Yung Jeong, and Simarjeet Singh Saini. Etched Core Fiber Bragg Grating Sensor Integrated with Microfluidic Channel [C]. 21st International Conference on Optical Fiber Sensors, Proc. of SPIE, 7753: 77530G-1~-4.

DOI: 10.1117/12.886164

Google Scholar