Evaluation of Capability of Measuring Device on the Basis of Diagnostics

Article Preview

Abstract:

In capability evaluation of measuring devices on the basis of diagnostics, it is important to compare variability of measurement with certain proportion of tolerance zone width of observed qualitative parameter. Determined index of capability of particular measuring device indicates its applicability for inspection of selected qualitative parameters in a given tolerance range. The paper is focused on evaluation of capability of digital micrometer DIGIMATIC within its entire measuring range (0 to 25mm) by the means of capability index Cgm and Cgmk. Evaluation of capability of the given measuring device was carried out by repeated measurements of standards with dimensions representing lower, middle and upper range of the measuring instrument at given accuracy (2μm) of measuring device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-74

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Fabian, Ľ. Straka, Prevádzka výrobných systémov. Edícia vedeckej a odbornej literatúry –FVT TU v Košiciach so sídlom v Prešove, Prešov, (2008).

Google Scholar

[2] N. Puchá, P. Malega, Proposal to increase productivity of work, In: Global crisis in the Central-Eastern European region, influence of financial systems and small and medium-sized enterprises. Czestochowa University of Technology, 2010, pp.1-10.

Google Scholar

[3] P. Malega, Z. Petričová, Using paired comparison by the product evaluating process, In: Intercathedra, No. 27/4 (2011), pp.39-44.

Google Scholar

[4] J. Hlavička, Diagnostika a spolehlivost, Vydavatelství ČVUT, Praha, (1990).

Google Scholar

[5] J. Ondirková, Aplikácia automatizácia a diagnostiky v procese manipulácie s materiálom, In: Strojárstvo EXTRA 5/2009 – MEDIA/ST Žilina, 2009, p.38/1-3.

Google Scholar

[6] A. Panda, I. Pandová, Statistical process control (SPC) computer aided SPC, In: Transactions of the Universities of Košice, No. 2 (2000), pp.24-26.

Google Scholar

[7] A. Panda, Riadenie kvality, FVT TU, (2008).

Google Scholar

[8] J. Hrubec, Spôsobilosť meradiel, http: /josef. posta. sweb. cz/KONF/Hrubec. doc.

Google Scholar

[9] J. Hrubec, Analýza systému merania, In: Kvalita a spoľahlivosť technických systémov Nitra, 2008, pp.43-48.

Google Scholar

[10] T. Krenický, S. Fabian, Data acquisition system for diagnostics of manufacturing system operational states. In: Annals of Faculty of Engineering Hunedoara, vol. 7, No. 1 (2009), pp.211-214.

Google Scholar

[11] J. Kmec, Ľ. Bičejová, et al. Technical and technological factors affecting hydroerosion surface topography. In: Annals of Faculty of Engineering Hunedoara. Vol. 10, No. 3 (2012), pp.485-488, ISSN 1584-2673.

Google Scholar

[12] Ľ. Bičejová, S. Fabian, Metódy vyhodnocovania signálu generovaného vibračným procesom / Evaluation methods of signals generated by vibration process. In: Nové smery vo výrobných technológiách 2008, Prešov, FVT TU, 2008, pp.362-365.

Google Scholar

[13] P. Semančo, M. Fedák, M. Rimár, Simulation study of two alternative workstations for pressure die-casting process. In: Applied Mechanics and Materials. Vol. 110-116 (2012), pp.660-664, ISSN 1662-7482.

DOI: 10.4028/www.scientific.net/amm.110-116.660

Google Scholar

[14] J. Maščenik, M. Nováková, J. Haľko, A design and simulation of testing stand for thin sheets rotary shaping. In: ASIS 2009 - Advanced Simulation of Systems, proceedings of 31st Autumn International Colloquium, Olomouc, 2009, pp.131-134.

Google Scholar

[15] STN ISO 21747 - Štatistické metódy. Výkonnosť procesu a štatistiky spôsobilosti pre meraný znak kvality.

Google Scholar

[16] STN ISO 8258 - Shewhartove regulačné diagramy.

Google Scholar