Abrasive Water Jet Cutting of the Steels Samples Cooled by Liquid Nitrogen

Article Preview

Abstract:

The paper is aimed at abrasive water jetting of non-corroding steels treated by cryogenic temperatures in liquid nitrogen. The investigation of cut walls shows that cryogenic temperatures influence material structure and respective properties. This research is focused on improvement of material reliability in various states of production systems and operation conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Zhao, S.Y. Hong, Cooling strategies for cryogenic machining from a materials viewpoint, J. Mater. Eng. Perform. 1 (1992) 669-678.

DOI: 10.1007/bf02649248

Google Scholar

[2] O.W. Dillon, R.J. De Angelis, W.Y. Lu, J.S. Gunasekera, J.A. Deno, The effects of temperature on the machining of metals, J. Mater. Shaping Technol. 8 (1990) 23-29.

DOI: 10.1007/bf02834790

Google Scholar

[3] M. Dhananchezian, M. Pradeep Kumar, A. Rajadurai, Experimental investigation of cryogenic cooling by liquid nitrogen in the orthogonal machining process, Int. J. Recent Trends Eng. 1 (2009) 55-59.

Google Scholar

[4] N.R. Dhar, M. Kamruzzaman, Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition. Int. J. Mach. Tools Manuf. 47 (2007) 754-759.

DOI: 10.1016/j.ijmachtools.2006.09.018

Google Scholar

[5] S. Sun, M. Brandt, M.S. Dargusch, Thermally enhanced machining of hard-to-machine materials – A review, Int. J. Mach. Tools Manuf. 50 (2010) 663-680.

DOI: 10.1016/j.ijmachtools.2010.04.008

Google Scholar

[6] S.S. Gill, J. Singh, R. Singh, H. Singh, Metallurgical principles of cryogenically treated tool steels – a review on the current state of science, Int. J. Adv. Manuf. Technol. 54 (2011) 59-82.

DOI: 10.1007/s00170-010-2935-5

Google Scholar

[7] A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, Effect of deep cryogenic treatment on the mechanical properties of tool steels, J. Mater. Process. Technol. 118 (2001) 350-355.

DOI: 10.1016/s0924-0136(01)00973-6

Google Scholar

[8] H.S. Yang, J. Wang, B.L. Shen, H.H. Liu, S.J. Gao, S.J. Huang, Effect of cryogenic treatment on the matrix structure and abrasion resistance of white cast iron subjected to destabilization treatment, Wear 26 (2006) 1150-1154.

DOI: 10.1016/j.wear.2006.03.021

Google Scholar

[9] S. Li, Y. Xie, X. Wu, Hardness and toughness investigations of deep cryogenic treated cold work die steel, Cryogenics 50 (2010) 89-92.

DOI: 10.1016/j.cryogenics.2009.12.005

Google Scholar

[10] P.F. Stratton, Optimising nano-carbide precipitation in tool steels, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 449-451 (2007) 809-812.

DOI: 10.1016/j.msea.2006.01.162

Google Scholar

[11] M. Satish Kumar, D. Mohan Lal, S. Renganarayanan, A. Kalanidhi, An experimental investigation on the mechanism of wear resistance improvement in cryotreated tool steels, Indian J. Eng. Mat. Sci. 8 (2001) 198-204.

DOI: 10.1016/s0011-2275(01)00065-0

Google Scholar

[12] V. Firouzdor, E. Nejati, F. Khomamizadeh, Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill, J. Mater. Process. Technol. 206 (2008) 467-472.

DOI: 10.1016/j.jmatprotec.2007.12.072

Google Scholar

[13] M. Preciado, P.M. Bravo, J.M. Alegre, Effect of low temperature tempering prior cryogenic treatment on carbonised steels, J. Mater. Process. Technol. 176 (2006) 41-44.

DOI: 10.1016/j.jmatprotec.2006.01.011

Google Scholar

[14] D. Das, A.K. Dutta, K.K. Ray, Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel, Wear 267 (2009) 1371-1380.

DOI: 10.1016/j.wear.2008.12.051

Google Scholar

[15] A.J. Vimal, A. Bensley, D.M. Lal, K. Srinivasan, Deep cryogenic treatment improves wear resistance of En 31 steel, Mater. Manuf. Process. 23 (2008) 369-376.

DOI: 10.1080/10426910801938098

Google Scholar

[16] M. Hashish, A model for abrasive - waterjet (AWJ) machining, J. Eng. Mater. – T. ASME 111 (1989), 154-162.

DOI: 10.1115/1.3226448

Google Scholar

[17] L.M. Hlaváč, JETCUT - software for prediction of high-energy waterjet efficiency, in: H. Louis (Ed.), 14th International Conference on Jetting Technology, BHR Group Limited, Prof. Eng. Pub. Ltd., Bury St Edmunds & London, Brugge, Belgium, 1998, pp.25-37.

Google Scholar

[18] M. Kantha Babu, O.V. Krishnaiah Chetty, Studies on recharging of abrasive water jet machining, Int. J. Adv. Manuf. Technol. 19 (2002) 697-703.

DOI: 10.1007/s001700200115

Google Scholar

[19] L.M. Hlaváč, Investigation of the Abrasive Water Jet Trajectory Curvature inside the Kerf, J. Mater. Process. Technol. 209 (2009), 4154-4161. (.

DOI: 10.1016/j.jmatprotec.2008.10.009

Google Scholar

[20] L.M. Hlaváč, I.M. Hlaváčová, L. Gembalová, J. Kaličinský, S. Fabian, J. Měšťánek, J. Kmec, V. Mádr, Experimental Method for Investigation of the Abrasive Water Jet Cutting Quality, J. Mater. Process. Technol. 209 (2009), 6190-6195. (doi:10.1016/j.jmatprotec. 2009.04.011).

DOI: 10.1016/j.jmatprotec.2009.04.011

Google Scholar