Electrochemical Performance of Mg-Doped Li2FeSiO4/C as Cathode Material for Lithium-Ion Batteries

Article Preview

Abstract:

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-94

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Zhang, C. Deng, S. Y. Yang, Preparation of Nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries,Electrochem. Solid-State Lett. 12 (2009) A136- A139.

DOI: 10.1149/1.3129133

Google Scholar

[2] Z. L. Gong, Y. X. Li, G. N. He, J. Li, Y. Yang,  Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid-State Lett. 11 (2008) A60- A63.

DOI: 10.1149/1.2844287

Google Scholar

[3] Z. P. Yang, S. Cai, X. Zhou, Y. M. Zhao, L. J. Miao, Sol-Gel Synthesis of Nanostructured Li2FeSiO4/C as Cathode Material for Lithium Ion Battery ,J. Electrochem. Soc. 159 (2012) A894- A898.

DOI: 10.1149/2.110206jes

Google Scholar

[4] Z. M. Zheng, Y. Wang, A. Zhang, T. R. Zhang, F. Y. Cheng, Z. L. Tao, J. Chen, : Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries ,J. Power Sources 198(2012)229-235.

DOI: 10.1016/j.jpowsour.2011.09.066

Google Scholar

[5] M. Zheng, Q. P. Chen, Z. X. Xi, Y. G. Hou, Q. L. Chen, One-step hydrothermal synthesis of Li2FeSiO4/C composites as lithium-ion battery cathode materials, J. Mater. Sci. 47(2012)2328-2332.

DOI: 10.1007/s10853-011-6048-9

Google Scholar

[6] D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson, J. O. Thomas,  A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes,J. Mater. Chem. 19 (2009) 82-88.

DOI: 10.1039/b813099j

Google Scholar

[7] R.Dominko, Li2MSiO4 (M= Fe and/or Mn) cathode materials, J. Power Sources 184(2006)462-468.

DOI: 10.1016/j.jpowsour.2008.02.089

Google Scholar

[8] S. Zhang, C. Deng, B. L. Fu, S. Y. Yang, L. Ma, Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries, J. Electroanal. Chem. 644 (2010) 150-154.

DOI: 10.1016/j.jelechem.2009.11.035

Google Scholar

[9] K.C. Kam, T. Gustafsson, J. O. Thomas, Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries, Solid State Ionics 192(2011) 356-359.

DOI: 10.1016/j.ssi.2010.03.030

Google Scholar

[10] B. Shao, I. Taniguchi,  Synthesis of Li2FeSiO4/C nanocomposite cathodes for lithium batteries by a novel synthesis route and their electrochemical properties, J. Power Sources 199(2012)278-286

DOI: 10.1016/j.jpowsour.2011.10.050

Google Scholar

[11] Z. P. Yan, S. Cai, L. J. Miao, X. Zhou, Y. M. Zhao,  Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery ,J. Alloys Compd. 511(2012) 101-106.

DOI: 10.1016/j.jallcom.2011.08.095

Google Scholar

[12] H. J. Guo, K. X. Xiang, X. Cao, X. H. Li, Z. X. Wang, L. M. Li, : Preparation and characteristics of Li2FeSiO4/C composite for cathode of lithium ion batteries ,Trans. Nonferrous Met. Soc. China 19(2009)166-169.

DOI: 10.1016/s1003-6326(08)60246-0

Google Scholar

[13] L. M. Li, H. J. Guo, X. H. Li, Z. X. Wang, W. J. Peng, K. X. Xiang, X. Cao, Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode ,J. Power Sources 189(2009)45–50.

DOI: 10.1016/j.jpowsour.2008.12.017

Google Scholar

[14] X. B. Huang, X. Li, H. Y. Wang, Z. L. Pan, M. Z. Qu, Z. L. Yu, Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries, Solid State Ionics 181(2010)1451-1455

DOI: 10.1016/j.ssi.2010.08.007

Google Scholar

[15] B. Huang, X. D. Zheng, M. Lu, Synthesis and electrochemical properties of carbon nano-tubes modified spherical Li2FeSiO4 cathode material for lithium-ion batteries,J. Alloys Compd. 525(2012)110-113.

DOI: 10.1016/j.jallcom.2012.02.087

Google Scholar

[16] X. B. Huang, X. Li, H. Y. Wang, Z. L. Pan, M. Z. Qu, Z. L. Yu, Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery ,Electrochim. Acta 55(2010) 7362-7366.

DOI: 10.1016/j.electacta.2010.07.036

Google Scholar

[17] S. Zhang, C. Deng, B. L. Fu, S. Y. Yang, L. Ma, Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries, Electrochim. Acta 55(2010) 8482-8489.

DOI: 10.1016/j.electacta.2010.07.059

Google Scholar

[18] C. Deng, S. Zhang, S. Y. Yang, B. L. Fu, L. Ma, Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M = Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries,J. Power Sources 196(2011)386–392.

DOI: 10.1016/j.jpowsour.2010.06.064

Google Scholar

[19] H. Hao, J. B. Wang, J. L. Liu, T. Huang, A. S. Yu, Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries,J. Power Source 210(2012)397-401.

DOI: 10.1016/j.jpowsour.2011.11.066

Google Scholar

[20] Y. M. Chiang, S. Y. Chung, J. T. Bloking, A. M. Anderron, U. S. Patent US 2004/0005265 A1(2004)

Google Scholar

[21] Y. H. Nien, J. R. Carey, J. S. Chen, Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors,J. Power Sources 193 (2009) 822-827.

DOI: 10.1016/j.jpowsour.2009.04.013

Google Scholar

[22] H. Ning, C. Y. Wang, X. Y. Kang, T. Wumair, Y. Han, Studies of V doping for the LiFePO4-based Li Ion batteries ,J. Alloys Compd.503 (2010) 204-208

DOI: 10.1016/j.jallcom.2010.04.233

Google Scholar