HMT-Induced and NaOH Assisted Hydrothermal Synthesis of ZnO Single Crystal Nanorods

Article Preview

Abstract:

This experiment involves the growth of ZnO nanorods with NaOH by the HMT-assisted hydrothermal method and discusses the efficiency of NaOH is helpful to the growth of ZnO nanorods. The analyses of the synthesized ZnO nanorods by XRD, SEM, EDS and TEM reveal a single crystal structure with good crystallinity where the nanorod growth is along the [001] direction. In addition, it is discovered experimentally that the aspect ratio of the product is increased with the addition of NaOH, which verifies that the basic environment is beneficial to the growth of ZnO nanorods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

413-418

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Pal, P. Santiago, Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process, J. Phys. Chem. B 109 (2005) 15317-15321.

DOI: 10.1021/jp052496i

Google Scholar

[2] J. Song, S. Lim, Effect of seed layer on the growth of ZnO nanorods J. Phys. Chem. C 111 (2007) 596-600.

Google Scholar

[3] K. Soumitra, D. Apurba, C. Subhadra, Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays, J. Phys. Chem. B 110 (2006) 17848-17853.

DOI: 10.1021/jp0629902

Google Scholar

[4] B. Liu, H. C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am Chem. Soc. 125 (2003) 4430-4431.

DOI: 10.1021/ja0299452

Google Scholar

[5] H. Zhang, D. Yang, D. Li, X. Ma, S. Li, D. Que, Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process, Crystal Growth & Design 5 (2005) 547-550.

DOI: 10.1021/cg049727f

Google Scholar

[6] Y. S. Fu, X. W. Du, J. Sun, Y. F. Song, J. Liu, Single-crystal ZnO cup based on hydrothermal decomposition route, J. Phys. Chem. C 111 (2007)3863-3867.

DOI: 10.1021/jp068461f

Google Scholar

[7] X. Zhou, D. Zhang, Y. Zhu, Y. Shen, X. Guo, W. Ding, Y. Chen, Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures, J. Phys. Chem. B 110 (2006) 25734-25739.

DOI: 10.1021/jp0643855

Google Scholar

[8] C. L. Kuo, T. J. Kuo, M. H. Huang, Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures, J. Phys. Chem. B 109 (2005) 20115-20121.

DOI: 10.1021/jp0528919

Google Scholar

[9] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater. 15 (2003) 464-466.

DOI: 10.1002/adma.200390108

Google Scholar

[10] W. hang, K. Yanagisawa, Hydrothermal synthesis of ZnO Long Fibers, Chemistry Letters. 34 (2005) 1170-1171.

DOI: 10.1246/cl.2005.1170

Google Scholar

[11] D. Andeen,; J. H. Kim, F. L. Frederick, K. L. Gregory, T. Sudhiranjan, Lateral epitaxial overgrowth of ZnO in water at 90°C, Adv. Funct. Mater. 16 (2006) 799-804.

DOI: 10.1002/adfm.200500817

Google Scholar

[12] C. Jiang, W. Zhang, G. Zou, W. Yu, Y. Qian, Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO, J. Phys. Chem. B 109 (2005) 1361-1363.

DOI: 10.1021/jp046655u

Google Scholar

[13] Y. W. Koh, M. Lin, C. K. Tan, Y. L. Foo, K. P. Loh, Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat, J. Phys. Chem. B 108 (2004) 11419-11425.

DOI: 10.1021/jp049134f

Google Scholar

[14] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem. B 105 (2001) 3350-3352.

DOI: 10.1021/jp010026s

Google Scholar

[15] Y. H. Tong, Y. C. Liu, L. Dong, D. X. Zhao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan, Growth of ZnO nanostructures with different morphologies by using hydrothermal technique, J. Phys. Chem. B 110 (2006) 20263-20267.

DOI: 10.1021/jp063312i

Google Scholar

[16] X. Gao, X. Li, W. Yu, Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex, J. Phys. Chem. B 109 (2005) 1155-1161.

DOI: 10.1021/jp046267s

Google Scholar

[17] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater. 17 (2005) 1001-1006.

DOI: 10.1021/cm048144q

Google Scholar

[18] Y. Sun, D. J. Riley, M. N. R. Ashfold, Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates, J. Phys. Chem. B 110 (2006) 15186-15192.

DOI: 10.1021/jp062299z

Google Scholar

[19] C. H. Lu, C. H. Yeh, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceramics International. 26 (2000) 351-357.

DOI: 10.1016/s0272-8842(99)00063-2

Google Scholar

[20] C. Pacholski, A. Kornowski, H. Weller, Self-Assembly of ZnO: From Nanodots to Nanorod, Angew. Chem., Int. Ed. 41 (2002) 1188-1191.

DOI: 10.1002/1521-3773(20020402)41:7<1188::aid-anie1188>3.0.co;2-5

Google Scholar

[21] X. Han, G. Wang, L. Zhou, J. G. Hou, Crystal orientation-ordered ZnO nanorod bundles on hexagonal heads of ZnO microcones: epitaxial growth and self-attraction, Chem. Commun. 2 (2006) 212-214.

DOI: 10.1039/b512259g

Google Scholar

[22] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process J. Phys. Chem. B 108 (2004) 3955-3958.

DOI: 10.1021/jp036826f

Google Scholar