[1]
J. J. Langenakens, L. Clijmans, H. Ramon and J. De Baerdemaeker, The Effects of Vertical Sprayer Boom Movements on the Uniformity of Spray Distribution, J. agric. Engng Res. 74 (1999) 281-291.
DOI: 10.1006/jaer.1999.0464
Google Scholar
[2]
B.M. Iyer, and B. M. J. Wills, Factors determining the design of tractor-mounted sprayer booms-sprayer nozzle characteristics, J. Agric. Eng. Res. 23 (1978) 37-43.
DOI: 10.1016/0021-8634(78)90077-x
Google Scholar
[3]
H. J. Nation (Inventor), Improvements in and relating to boom assemblies. UK Patent Application GB 2028070 A, (1980).
Google Scholar
[4]
A. R. Frost, Simulation of an Active Spray boom Suspension, J. agric. Engng Res. 30 (1984) 313 - 325.
Google Scholar
[5]
J. A. Marchant, Active spray boom control system: Classical design methods, Divisional Note DN 1330, AFRC Institute of Engineering research (1986).
Google Scholar
[6]
J. A. O'Sullivan, Simulation of the behaviour of a spry boom with an active and passive pendulum suspension. Journal of Agricultural Engineering Research, 35(1986) 157-173.
DOI: 10.1016/s0021-8634(86)80054-3
Google Scholar
[7]
K. Deprez, J. Anthonis, H. Ramon, H. Van Brussel, Development of a Slow Active Suspension for Stabilizing the Roll of Spray Booms, Part 2: Controller Design, Biosystems Eng. 81(3) (2002) 273-279.
DOI: 10.1006/bioe.2001.0024
Google Scholar
[8]
J. Anthonis and H. Ramon, Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) (1999), Haifa, June 28-30.
Google Scholar
[9]
H. Ramon and J. De Baerdemaeker, DESIGN OF A CASCADE CONTROLLER FOR A FLEXIBLE SPRAY BOOM, Mechanical Systems and Signal Processing, 10(2) (1996) 197-210.
DOI: 10.1006/mssp.1996.0014
Google Scholar
[10]
H. Ramon, J. Anthonis, D. Moshou, J. De Baerdemaeker, Evaluation of a Cascade Compensator for Horizontal Vibrations of a Flexible Spray Boom, J. agric. Engng Res. 71 (1998), 81-92.
DOI: 10.1006/jaer.1998.0301
Google Scholar
[11]
L. Clijmans, J. Swevers, J. De Baerdemaeker and H. Ramon, Sprayer Boom Motion, Part 1: Derivation of the Mathematical Model using Experimental System Identification Theory, J. agric. Engng Res. 76 (2000) 61-69.
DOI: 10.1006/jaer.2000.0530
Google Scholar
[12]
J. R. Hewit, and J. S. Burdess, Fast Dynamic Decoupled Control for Robotics using Active Force Control. Trans. Mechanism and Machine Theory, 16(5) (1981) 535-542.
DOI: 10.1016/0094-114x(81)90025-2
Google Scholar
[13]
J. J. Craig, Introduction to Robotics: Mechanics and Control. Pearson Prentice Hall, (2005).
Google Scholar
[14]
M. Mohammad, M. Mailah, and A.H. Muhaimin, Vibration control of mechanical suspension system using active force control, Proceedings of the 1st International Conference on Natural Resources Engineering and Technology (2006).
Google Scholar
[15]
G. Priyandoko, M. Mailah and H. Jamaluddin, Vehicles active suspension system using skyhook adaptive neuro active force control, Mechanical Systems and Signal Processing, 23(3) (2009) 855-868.
DOI: 10.1016/j.ymssp.2008.07.014
Google Scholar
[16]
S.B. Hussein, H. Jamaluddin and M. Mailah, An intelligent method to estimate the inertia matrix of a robot arm for active force control using on-line neural network training scheme, Journal Mekanikal, 2(8) (1999) 38-53.
Google Scholar