Synthesis, Characterization and Application of Novel Hyamine-Containing Crosslinked β-Cyclodextrin Resin

Article Preview

Abstract:

A novel kind of hyamine-containing crosslinked β-cyclodextrin resin (β-CD-DEAE) was synthesized. 2-Diethylaminoethyl group (DEAE) was introduced on β-cyclodextrin by the reaction of 2-diethylaminoethyl chloride hydrochloride with β-cyclodextrin under basic condition and then the crosslinked resin was formed by the crosslink reaction using epichlorohydrin. The quaternary ammonium group was produced by the quaterisation of DEAE using epichlorohydrin. The new crosslinked cyclodextrin resin was characterized by scanning electron microscopy, Kjeldahl method and infrared spectroscopy. The content of nitrogen approaches approximately 5.55%. Meanwhile, the phenol adsorption property for wastewater treatment has been determined. It was found that the hyamine-containing crosslinked β-CD has a strong capability of phenol adsorption. Under the optimal pH of 9, the adsorbent dosage was 30mg/ml. If the initial phenol concentration was 100mg/l, the maximum phenol adsorption efficiency was 84.42%. In addition, the effective recycling efficiency of the new crosslinked β-CD resin was almost 100%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-206

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.C. Werner, I.M. Warner: The use of naphthalene fluorescence probesto studythe binding siteson cyclodextrin polymers formedfrom reactionof cyclodextrin monomerswith epichlorohydrin, J. Inclusion Phenom, Vol. 385-396 (1994), p.18.

DOI: 10.1007/bf00707387

Google Scholar

[2] J. Szejtli: Cyclodextrin inclusion complexes: Reaction catalysed by cyclodextrins, Cyclodextrin Technology, Kluwer, Dordrecht (1988).

Google Scholar

[3] N. Wiedenhof, J. Lammers, C.L. van Panthaleon Van Eck: Properties of Cyclodextrins Part III, Cyclodextrin-Epichlorhydrin Resins: Preparation and Analysis, Starch, Vol. 119-123 (1969), p.21.

DOI: 10.1002/star.19690210504

Google Scholar

[4] J.L. Hoffman: Chromatography of Nucleic Acids on Cross-Linked Cyciodextrin Gels Having Inclusion-Forming Capacity, J. Macromol. Sci. Chem, Vol. 1147-1157 (1973), p.7.

DOI: 10.1080/10601327308060488

Google Scholar

[5] K. Sreenivasan: Solvent effect on the interaction of steroids with a novel methyl β-cyclodextrin polymer, J. Appl. Polym. Sci, Vol. 1857-1861 (1998), p.68.

DOI: 10.1002/(sici)1097-4628(19980613)68:11<1857::aid-app17>3.0.co;2-r

Google Scholar

[6] J. Szejtli: Past, present, and future of cyclodextrin Research, Pure Appl. Chem, Vol. 1825-1845 (2004), p.76.

DOI: 10.1351/pac200476101825

Google Scholar

[7] J. Szejtli: Introduction and general overview of cyclodextrins, Chem. Rev, Vol. 1743-1754 (1998), p.98.

Google Scholar

[8] S.W. Choi, S. Amajjahe, H. Ritter: Polymerization of included monomers and behaviour of resulting polymers, Inclusion Polymers, Vol. 175-203 (2009), p.222.

DOI: 10.1007/12_2008_6

Google Scholar

[9] G. Wenz, S. Amajjahe: Advances in Polymer Science, Inclusion Polymers, Vol. 1-54 (2009), p.222.

Google Scholar

[10] F. Yhaya, A.M. Gregory, M.H. Stenzel: Polymers with Sugar Buckets–The Attachment of Cyclodextrins onto Polymer Chains, Aust. J. Chem, Vol. 195-210 (2010), p.63.

DOI: 10.1071/ch09516

Google Scholar

[11] M. Ma, D.Q. Li: New organic nanoporous polymers and their inclusion complexes, Chem. Mater, Vol. 872-874 (1999), p.11.

DOI: 10.1021/cm981090y

Google Scholar

[12] G. Crini: Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci, Vol. 38-70 (2005), p.30.

DOI: 10.1016/j.progpolymsci.2004.11.002

Google Scholar

[13] S.R. Ha, S. Vinitnantharat, H. Ozaki: Bioregenerationby mixed microorganismsof granular activated carbon loadedwith a mixtureof phenols, Biotechnology letters, Vol. 1093-1096 (2000), p.22.

DOI: 10.1023/a:1005650612768

Google Scholar

[14] S.H. Kim, J. Ahn, H.S. Kwak: Crosslinkingof β-cyclodextrinon cholesterol removalfrom milk, Arch. Pharmacal. Res, Vol. 1183-1187 (2004), p.27.

Google Scholar

[15] J. Szejtli: Chemistry and separation of cyclodextrins, In Cyclodextrins and their inclusion complexes; Akademiai Kiado: Budapest, Hungary, 1982, pp.17-43.

Google Scholar

[16] J. Solms, R.H. Egli: Harzemit Einschlusshohlräumenvon Cyclodextrin‐Struktur, Helvetica Chimica Acta, Vol. 1225-1228 (1965), p.48.

DOI: 10.1002/hlca.19650480603

Google Scholar

[17] G. Crini, L. Janus, M. Morcellet, G. Torri, N. Morin: Sorption properties toward substituted phenolic derivatives in water using macroporous polyamines containing β-cyclodextrin, J. Appl. Polym. Sci, Vol. 2903-2910 (1999), p.73.

DOI: 10.1002/(sici)1097-4628(19990929)73:14<2903::aid-app14>3.0.co;2-2

Google Scholar

[18] E. Renard, A. Deratani, G. Volet, B. Sebille: Preparation and characterization of water soluble high molecular weight β-cyclodextrin-epichlorohydrin polymers, Eur. Polym. J, Vol. 49-57 (1997), p.33.

DOI: 10.1016/s0014-3057(96)00123-1

Google Scholar

[19] Association of Official Analytical Chemists: Official methods of analysis, 15th ed, AOAC, Arlington, VA (1990).

Google Scholar