[1]
Gumbricht T. Nutrient removal processes in freshwater submersed macrophyte systems[J]. Ecological Engineering, 1993, 2: 1-30.
DOI: 10.1016/0925-8574(93)90024-a
Google Scholar
[2]
Elln V D, Wouter J, Vande B. Impact of submerged macrophyte including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms[J]. Aquatic Botany, 2002, 72: 267-274.
DOI: 10.1016/s0304-3770(01)00205-4
Google Scholar
[3]
Schneider, Melzer. Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters. Hydrobiologia , 2004, 527: 195–207
DOI: 10.1023/b:hydr.0000043301.50788.36
Google Scholar
[4]
Te Cao, Leyi Nia, and Ping Xie. Acute Biochemical Responses of a Submersed Macrophyte, Potamogeton crispus L., to High Ammonium in an Aquarium Experiment. Journal of Freshwater Ecology. 2004,19:279-284
DOI: 10.1080/02705060.2004.9664542
Google Scholar
[5]
Te Cao, Ping Xie, Leyi Ni, Meng Zhang, Jun Xu.Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte,Potamogeton crispus, under NH4+ stress and low light availability.Environmental and Experimental Botany,2009,66:74-78
DOI: 10.1016/j.envexpbot.2008.10.004
Google Scholar
[6]
Gao Jingqing, Xiong Zhiting, Zhang Jingdong.Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytesa.Desalination,2009,242:193-204
DOI: 10.1016/j.desal.2008.04.006
Google Scholar
[7]
Ozkan Korhan, Jeppesen Erik, Johansson Liselotte S. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment,Freshwater Biology,2010,55(2):463-475
DOI: 10.1111/j.1365-2427.2009.02297.x
Google Scholar
[8]
Van W, Degce J, Grillas P. The effect of anaerobic sediment on the growth of Potamogeton pectinatus L: the role of organic matter, sulphide and ferrous iron[J]. Aquat Bot, 1992, 44: 31-49.
DOI: 10.1016/0304-3770(92)90079-x
Google Scholar
[9]
Yu Haichan, Ye Chun, Song Xiangfu, Liu Jie. Comparative analysis of growth and physio-biochemical responses of Hydrilla verticillata to different sediments in freshwater microcosms. Ecological Engineering,2010,36:1285-1289
DOI: 10.1016/j.ecoleng.2010.06.004
Google Scholar
[10]
Ferrat L, Pergent-Martini C, Roméo M,2003.Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat. Toxicol. 65, 187–204.
DOI: 10.1016/s0166-445x(03)00133-4
Google Scholar
[11]
Amini F, Ehsanpour A A, 2005.Soluble proteins,proline,carbohydrate sand Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) Cultivars under in vitro salt stress. Am. J. Biochem. Biotechnol.1, 204–208.
DOI: 10.3844/ajbbsp.2005.212.216
Google Scholar
[12]
NAKANO H,MAKINO A, MAE T. The effect of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and N content in rice leaves[J]. Plant Physiology, 1997, 115:191-198.
DOI: 10.1104/pp.115.1.191
Google Scholar
[13]
Xie Y H, An S Q, Wu B F, Wang W W, 2005. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environ. Exp. Bot. 57, 195–200.
DOI: 10.1016/j.envexpbot.2005.06.001
Google Scholar
[14]
Madsen T V, Cedergreen N, 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich river. Freshwater Biol. 47, 283–291.
DOI: 10.1046/j.1365-2427.2002.00802.x
Google Scholar
[15]
Chambers P A, Prepas E E, Bothwell ML P A, Hamilton H R. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters[J]. Canadian Journal of Fishery and Aquatic Sciences,1989,46:435-439
DOI: 10.1139/f89-058
Google Scholar