[1]
Vizcaya-Ruiz, A.D.; Ruiz-Ramos, Q.B.; Cebrian, M.E., (2009). Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674(1-2), 85-92 (8 pages).
DOI: 10.1016/j.mrgentox.2008.09.020
Google Scholar
[2]
Zhang, Y., Yang, M., Huang, X., 2003. Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Chemosphere, 51(9), 945–952.
DOI: 10.1016/s0045-6535(02)00850-0
Google Scholar
[3]
Iqbal, J.; Kim, H.J.; Yang, J.S.; Baek, K.; Yang, J.W., (2007). Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere, 66(5), 970-976 (7 pages).
DOI: 10.1016/j.chemosphere.2006.06.005
Google Scholar
[4]
Vaughan Jr, R.L.; Reed, B.E., (2005). Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res., 39(6),1005-1014 (10 pages).
DOI: 10.1016/j.watres.2004.12.034
Google Scholar
[5]
Natale, F.D.; Erto, A.; Lancia, A.; Musmarra, D., (2008). Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Res., 42(8-9), 2007-2016 (10 pages).
DOI: 10.1016/j.watres.2007.12.008
Google Scholar
[6]
Mondal, P.; Majumder, C.B.; Mohanty B., (2006). Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater., 137(1), 464-479 (16 pages).
DOI: 10.1016/j.jhazmat.2006.02.023
Google Scholar
[7]
Chen, W.F.; Parette, R.; Zou, J.Y.; Cannon, F.S.; Dempsey, B.A., (2007). Arsenic removal by iron-modified activated carbon. Water Res., 41(9),1851-1858 (8 pages).
DOI: 10.1016/j.watres.2007.01.052
Google Scholar
[8]
Mondal, P.; Majumder, C.B.; Mohanty, B., (2008). Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. J. Hazard. Mater., 150(3),695-702 (8 pages).
DOI: 10.1016/j.jhazmat.2007.05.040
Google Scholar
[9]
Daus, B.; Wennrich, R.; Weiss, H., (2004). Sorption materials for arsenic removal from water: a comparative study. Water Res., 38(12), 2948-2954 (7 pages).
DOI: 10.1016/j.watres.2004.04.003
Google Scholar
[10]
Mondal, P.; Majumder, C.B.; Mohanty B., (2008). Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J. Hazard. Mater., 153(1-2), 588-599 (12 pages).
DOI: 10.1016/j.jhazmat.2007.09.028
Google Scholar
[11]
Okoye, A.I.; Ejikeme, P.M.; Onukwuli, O.D., (2010). Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int. J. Environ. Sci. Tech., 7(4), 793-800 (8 pages).
DOI: 10.1007/bf03326188
Google Scholar
[12]
Nemr, A.E.; Khaled, A.; Abdelwahab, O.; El-Sikaily, A., (2008). Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. J. Hazard. Mater., 153(1), 263-275 (13 pages).
DOI: 10.1016/j.jhazmat.2007.06.091
Google Scholar
[13]
Demiral, H.; Demiral, İ.; Tümsek, F.; Karabacakoğlu, B., (2008). Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem. Eng. J., 144(2), 188-196 (9 pages).
DOI: 10.1016/j.cej.2008.01.020
Google Scholar
[14]
Kavitha, D.; Namasivayam, C., (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technol., 98(1), 14-21 (8 pages).
DOI: 10.1016/j.biortech.2005.12.008
Google Scholar
[15]
Ranjan, D.; Talat, M.; Hasan, S.H., (2009). Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish'. J. Hazard. Mater., 166(2-3), 1050-1059 (10 pages).
DOI: 10.1016/j.jhazmat.2008.12.013
Google Scholar
[16]
Miretzky, P.; Muñoz, C.; Carrillo-Chavez, A., (2010). Cd (II) removal from aqueous solution by Eleocharis acicularis biomass, equilibrium and kinetic studies. Bioresource Technol., 101(8), 2637-2642 (6 pages).
DOI: 10.1016/j.biortech.2009.10.067
Google Scholar
[17]
Crini, G., (2008). Kinetic, equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigments, 77(2), 415-426 (12 pages).
DOI: 10.1016/j.dyepig.2007.07.001
Google Scholar
[18]
Kobya, M., (2004). Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technol., 91(3), 317-321 (6 pages).
DOI: 10.1016/j.biortech.2003.07.001
Google Scholar