Sparse Signal Recovery Based on Simulated Annealing

Article Preview

Abstract:

Sparse signal recovery is a hot topic in the fields of optimization theory and signal processing. Two main algorithmic approaches, i.e. greedy pursuit algorithms and convex relaxation algorithms have been extensively used to solve this problem. However, these algorithms cannot guarantee to find the global optimum solution, and then they perform poorly when the sparsity level is relatively large. Based on the simulated annealing algorithm and greedy pursuit algorithms, we propose a novel algorithm on solving the sparse recovery problem. Numerical simulations show that the proposed algorithm has very good recovery performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1295-1298

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Elad: Sparse and redundant representations: from theory to applications in signal and image processing. New York: Springer ( 2010)

DOI: 10.1007/978-1-4419-7011-4

Google Scholar

[2] D. L. Donoho: IEEE Trans. Inf. Theory, vol. 52 ( 2006), pp.1289-1306

Google Scholar

[3] J. A. Tropp and S. J. Wright: Pro. IEEE, vol. 98 (2010), pp.948-958

Google Scholar

[4] S. F. Cotter, B. D. Rao, K. Engan and K. Kreutz-Delgado: IEEE Trans. Signal Process., vol. 53 (2005), pp.2477-2488

DOI: 10.1109/tsp.2005.849172

Google Scholar

[5] D. Malioutov, M. Cetin and A.S. Willsky: IEEE Trans. Signal Process., vol. 53 (2005), pp.3010-3022

DOI: 10.1109/tsp.2005.850882

Google Scholar

[6] S.S. Chen, D.L. Donoho and M.A. Saunders: SIAM J. Sci. Comput., vol. 20 (1999) , pp.33-61

Google Scholar

[7] Z.S. He, A. Cichocki, R. Zdunek and J.T. Cao, in: Proc. Advances in Neural Networks (2008)

Google Scholar

[8] R. Gribonval, H. Rauhut, K. Schnass and P. Vandergheynst: J. of Fourier Anal. Appl., vol. 14 (2008), pp.655-687

DOI: 10.1007/s00041-008-9044-y

Google Scholar

[9] D. Needell and J.A. Tropp: Appl. Comput. Harmon. Anal., vol. 26(2009), pp.301-321

Google Scholar

[10] J. A. Tropp and A.C. Gilbert: IEEE Trans. Inf. Theory, vol. 53(2007), pp.4655-4666

Google Scholar

[11] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi: Science, vol. 220 (1983), pp.671-680

Google Scholar

[12] S. Geman and D. Geman: IEEE Trans. Pattern Anal., vol. 6 (1984), pp.721-741

Google Scholar