Some Cryptographic Properties of Rotation Symmetric Boolean Functions

Article Preview

Abstract:

Using the derivative of H Boolean functions and the e-derivativedefined by the authors as the research tools, we go deep into the internal structure of the Booleanfunction values​​, additionally,by the methods of cascade calculations and analytic combinatorics, cryptographic properties such as structural features, existence,balance and algebraic immunity of rotation symmetric H Boolean functions withdiffusibility are studied. Then we get the results that the Second Order rotation symmetric Boolean functionsare H Boolean functions,andthe results to the issues such asthe balance and algebraic immunity of rotation symmetric H Boolean functionsand the existence of the Third Order symmetric H Boolean functions are also be established.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2704-2707

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Dalai, S. Maitra, S. Sarkar. " Results on rotation symmetric bent functions". Discrete Mathematics, Vol.309(8):2398-2409(2006).

DOI: 10.1016/j.disc.2008.05.017

Google Scholar

[2] A. Maximov, M. Hell, S. Maitra. "Plateaued rotation symmetric boolean runctions on odd number of variables". First Workshop on Boolean Functions: Cryptography and Applications, University of Rouen and Havre, pp.83-104(2005).

Google Scholar

[3] P. Stanica, S. Maitra."Construction of rotation symmetric Boolean functions with optimal algebraic immunity". Computer Systems, Vol.12(3):267-84(2009).

Google Scholar

[4] S. Fu, C. Li, K. Matsuura, et al."Construction of rotation symmetric Boolean functions with maximum algebraic immunity". CANS 2009, LNCS 5888, pp.402-412(2009).

DOI: 10.1007/978-3-642-10433-6_27

Google Scholar

[5] S. Fu, L. Qu, C. Li, et al."Balanced rotation symmetric Boolean functions with maximum algebraic immunity". Information Security, IET, Vol.5(2):93-99(2011).

DOI: 10.1049/iet-ifs.2010.0048

Google Scholar

[6] J. Pieprzyk, C. Qu."Fast hashing and rotation-symmetric functions". Journal of Universal Computer Science, Vol.5(1):20-31 (1999).

Google Scholar

[7] W. Li, Z. Wang, J. Huang. "The e-derivative of boolean functions and its application in the fault detection and cryptographic system". Kybernetes, Vol.40(5-6):905-911(2011).

DOI: 10.1108/03684921111142458

Google Scholar

[8] J. Huang, Z. Wang. "The relationship between correlation immune and weight of H Boolean functions". Journal on Communications, Vol.33(2):110-118(2012). (In Chinese)

Google Scholar