[1]
A. Amer: Voting-based simultaneous tracking of multiple video objects, IEEE Trans. Circuits and Systems for Video Technology, Vol.15 (2005). p.1448.
DOI: 10.1109/tcsvt.2005.857311
Google Scholar
[2]
D. C. Alexander and B. F. Buxton: Statistical modeling of colour data. International Journal of Computer Vision, Vol.44 (2001), p.87.
Google Scholar
[3]
S. Agarwal, A. Awan and D. Roth: Learning to detect objects in images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.26 (2004), p.1475.
DOI: 10.1109/tpami.2004.108
Google Scholar
[4]
P. Viola, M. Jones and D. Snow: Detecting pedestrians using patterns of motion and appearance, International Journal of Computer Vision, Vol.63 (2005), p.153.
DOI: 10.1007/s11263-005-6644-8
Google Scholar
[5]
E. Marszalec, B. Martinkauppi, M. Soriano and M. Pietikainen: A physics-based face database for color research.Journal of Electronic Imaging, Vol.9 (2000), p.32.
Google Scholar
[6]
T. Ojala, M. Pietikainen and D. Harwood: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, Vol.29 (1996), p.51.
DOI: 10.1016/0031-3203(95)00067-4
Google Scholar
[7]
M. Cristani, M. Bicego and V. Murino: Audio-visual event recognition in surveillance video sequences, IEEE Trans. Multimedia, Vol.9 (2007), p.257.
DOI: 10.1109/tmm.2006.886263
Google Scholar
[8]
C. Wren, A. Azarbayejani, T. Darrell and A. P. Pfinder: Real-time tracking of the human body, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19 (1997), p.780.
DOI: 10.1109/34.598236
Google Scholar
[9]
F. I. Bashir, A. A. Khokhar and D. Schonfeld: Real-time motion trajectory-based indexing and retrieval of video sequences, IEEE Trans. Multimedia, Vol.9 (2007), p.58.
DOI: 10.1109/tmm.2006.886346
Google Scholar
[10]
L. Ziao and C. Thorpe: Stere-and neural network-based pedestrian detection, IEEE Transactions on Intelligent Transportation Systems, Vol.1 (2000), p.148.
Google Scholar