[1]
G. H. Staab: Laminar Composite. Butterworth-Heinemann: Woburn, MA (1999).
Google Scholar
[2]
K. K. Chawla: Composite Materials: Science and Engineering. 2nd(ed) , Springer Science+Business Media, USA (1998) .
Google Scholar
[3]
S. D.Wanjale and J. P. Jog: Polyolefin-Based Natural Compostes – Chapter14, S. Kalia et al. (eds), Cellulose Fibers: Bio and Nano Polymer Composites. Springer-Verlag, Berlin, Heidelberg (2011).
DOI: 10.1007/978-3-642-17370-7_14
Google Scholar
[4]
O. G. Palana: Engineering Chemistry. Tata McGraw Hill Education: New Delhi (2009).
Google Scholar
[5]
A. P. Gupta, M. Sharma and V. Kumar: Preparation and Characterization of Potato Starch Based Low Density Polyethylene/Low Density Polyethylene Grafted Maleic Anhydride Biodegradable Polymer Composite. Polymer-Plastics Technology and Engineering, Vol. 47 (2008), p.953–959.
DOI: 10.1080/03602550802274597
Google Scholar
[6]
C. S.Tena-Salcido, F.J. Rodríguez-González, M. L Méndez-Hernández. and J. C. Contreras-Esquivel: Effect of Morphology on the Biodegradation of Thermoplastic Starch in LDPE/TPS Blends. Polymer Bulletin,Vol.60 (2008), p.677–688.
DOI: 10.1007/s00289-008-0903-0
Google Scholar
[7]
T. Behjat, A. R. Russly, C. A. Luqman, A. Y. Yus, and I. N. Azowa: Effect of PEG on the biodegradability studies of Kenaf cellulose -polyethylene composites. International Food Research Journal, Vol.16 (2009), pp.243-247.
Google Scholar
[8]
D. Cho, H. S. Lee, and S. O. Han: Effect of Fiber Surface Modification on the Interfacial and Mechanical Properties of Kenaf Fiber-Reinforced Thermoplastic and Thermosetting Polymer Composites. Composite Interfaces Vol.16 (2009), p.711–729.
DOI: 10.1163/092764409x12477427307537
Google Scholar
[9]
A. A. A. Rashdi, S. M. Sapuan, M. M. H. M Ahmad and A. Khalina: Combined Effects of Water Absorption Due To Water Immersion, Soil Buried and Natural Weather on Mechanical Properties of Kenaf Fiber Unsaturated Polyester Composites (KFUPC). International Journal of Mechanical and Materials Engineering (IJMME), Vol.5 No.1 (2010), pp.11-17.
DOI: 10.1177/096739111001800606
Google Scholar
[10]
M. P.Westman, L. S. Fifield, K. L. Simmons, S. G. Laddha, and T.A. Kafentzis: Natural Fiber Composites: A Review. Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 (2010).
DOI: 10.2172/989448
Google Scholar
[11]
S. Samal, S. Mohanty, and S. Nayak: Banana/Glass Fiber-Reinforced Polypropylene Hybrid Composites: Fabrication and Performance Evaluation. Polymer Plastics Technology and Engineering, Vol. 48 No.4 (2009), pp.397-414.
DOI: 10.1080/03602550902725407
Google Scholar
[12]
N. Srinivasababu, K. M. M. Rao, and J. S. Kuma: Experimental determination of tensile properties of okra, sisal and banana fiber reinforced polyester composites. Indian Journal of Science and Technology, Vol.2 No (2009), pp.35-38.
DOI: 10.17485/ijst/2009/v2i7.8
Google Scholar
[13]
M. G. El-Meligy, S. H. Mohamed, and R. M. Mahani: Study Mechanical, Swelling and Dielectric Properties of Prehydrolysed Banana Fiber – Waste Polyurethane foam Composites. ICCM-17 Edinburgh, Scotland July 27-31, 2009.
DOI: 10.1016/j.carbpol.2009.11.034
Google Scholar
[14]
S. K. Majhi, S. K. Nayak, S. Mohanty, and L. Unnikrishnan: Mechanical and fracture behaviour of banana fiber reinforced Polylactic acid biocomposites. International Journal of Plastics Technology, Vol.14 No.1 (2010), pp.57-75.
DOI: 10.1007/s12588-010-0010-6
Google Scholar
[15]
H. Anuar, S. H. Ahmad, R. Rasid, and N. N. S Daud: Tensile and Impact Properties of Thermoplastic Natural Rubber Reinforced Short Glass Fiber and Empty Fruit Bunch Hybrid Composites. Polymer-Plastics Technology and Engineering, Vol.45 (2006),p.1059– 1063.
DOI: 10.1080/03602550600728794
Google Scholar
[16]
A. A. Bakar, A. Hassan, and A. F. M. Yusof: Effect of oil palm empty fruit bunch and acrylic impact modifier on mechanical properties and processability of unplasticized poly(vinyl chloride) composite. Polymer-Plastics Technology and Engineering, Vol. 44 (2005), pp.1125-1137.
DOI: 10.1081/pte-200065237
Google Scholar
[17]
H. P. S. A. Khalil, R. N. Kumar, S. M. Asri, N. A. Nik Fuaad, and M. N. Ahmad: Hybrid Thermoplastic Pre-preg Oil Palm Frond Fibers (OPF) Reinforced in Polyester Composites. Polymer-Plastics Technology and Engineering, Vol.46 (2007), p.43–50.
DOI: 10.1080/03602550600948749
Google Scholar
[18]
A.Ahmadzadeh and S. Zakaria: Study on the Water Absorption and Hardness of Phenolated Oil Palm Empty Fruit Bunches (PEFB)-base Biocomposite. Iranian Polymer Journal, Vol.18 No.3 (2009), pp.247-255.
Google Scholar
[19]
H. S.Yang, H. J. Kim, J. Son, H. J. Park, B. J. Lee, and T. S Hwang: Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, Vol. 63 (2004), p.305–312.
DOI: 10.1016/s0263-8223(03)00179-x
Google Scholar
[20]
S. Panthapulakkal, M. Sain, and S. Law: Effect of Coupling Agents on Rice Husk Filled HDPE Extruded Profiles. Polymer International, Vol. 54 No.1 (2005),p.137–142.
DOI: 10.1002/pi.1657
Google Scholar
[21]
H. D. Rozman, L. Musa and A. Bakar: Rice husk-polyester composites: The effect of chemical modification of rice husk on the mechanical and dimensional stability properties. Journal of Applied Polymer Science, Vol.97 No.3 (2005), pp.1237-1247.
DOI: 10.1002/app.21268
Google Scholar
[22]
S. M. L. Rosa, E. F. Santos, C. A. Ferreira, and S. M. B. Nachtigall: Studies on the Properties of Rice-Husk-Filled-PP Composites – Effect of Maleated PP. Materials Research, Vol. 12 No. 3 (2009),pp.333-338.
DOI: 10.1590/s1516-14392009000300014
Google Scholar
[23]
S. N. Monteiro, R. J. S. Rodriguez and M. V. De Souza: Sugar Cane Bagasse Waste as Reinforcement in Low Cost Composites. Advanced Performance Material, Vol.5 No.3 (1998), pp.183-191.
Google Scholar
[24]
G. C. Stael, M. I. B. Tavares and J. R. M. d'Almeida: Impact behaviour of sugarcane bagasse waste–EVA composites. Polymer Testing, Vol. 20 No. 8 (2001), pp.869-872.
DOI: 10.1016/s0142-9418(01)00014-9
Google Scholar
[25]
K. Bilba, M. A. Arsene, and A. Ouensanga: Sugar cane bagasse fiber reinforcedcement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cement and Concrete Composites, Vol. 25 No.1,(2003), pp.91-96.
DOI: 10.1016/s0958-9465(02)00003-3
Google Scholar
[26]
Y. Cao and I. Fukumoto: Evaluation of Mechanical Properties of Injection Moulding Composites Reinforced by Bagasse Fiber. Journal of Solid Mechanics and Materials Engineering, Vol. 1 No. 10 (2007), pp.1209-1218.
DOI: 10.1299/jmmp.1.1209
Google Scholar
[27]
M. R. Ishak, Z. Leman, S. M. Sapuan, M. Y. Salleh, and S. Misri: The Effect of Sea Water Treatment on The Impact and Flexural Strength of Sugar Palm Fiber Reinforced Epoxy Composites. International Journal of Mechanical and Materials Engineering (IJMME), Vol. 4 No.3(2009), pp.316-320.
Google Scholar
[28]
G. D. Vilakati, A. K. Mishra, S. B. Mishra, B. N. Mamba, and J. M. Thwala Influence of TiO2-Modification on the Mechanical and Thermal Properties of Sugarcane Bagasse–EVA Composites. Journal of Inorganic and Organic Metallic Polymers and Materials, Vol. 20, No. 4 (2010), pp.802-808.
DOI: 10.1007/s10904-010-9398-x
Google Scholar
[29]
R. Wirawan, E. S. Zainudin, and S. M. Sapuan: Mechanical Properties of Natural Fiber Reinforced PVC Composites: A Review. Sains Malaysiana , Vol. 38 No. 4 (2009) p.531–535.
Google Scholar
[30]
R. Wirawan, S. M. Sapuan, R. Yunus, and K. Abdan: Properties of Sugarcane Bagasse/ Poly(vinyl chloride) Composites After Various Treatments. Journal of Composite Materials, Vol. 45 No.16 (2010), pp.1667-1674.
DOI: 10.1177/0021998310385030
Google Scholar
[31]
P. J. Vasoya, N. M. Mehta, and P. H. Parsania: Mechanical, Electrical and Water Absorption Study of Jute/Glass/Jute-bamboo/Glass-bamboo-bisphenol- C-formaldehyde-acrylate a Value Added Composites. Polymer-Plastics Technology and Engineering, Vol. 46 (2007),p.621–628.
DOI: 10.1080/03602550701304834
Google Scholar
[32]
N. S. Suharty, B. Wirjosentono, M. Firdaus, D. S. Handayani, J. Sholikhah and Y. A. Maharani, Synthesis of Degradable Bio-Composites Based on Recycle Polypropylene Filled with Bamboo Powder Using a Reactive Process. Journal of Physical Science, Vol.19 No.2 (2008),p.105–115.
Google Scholar
[33]
S. Kittinaovarat and W. Suthamnoi Physical Properties of Polyolefin / Bamboo Charcoal Composites. Journal of Metals, Materials and Minerals, Vol.19 No.1 (2009), pp.9-15.
Google Scholar
[34]
A.Mohamed and S. Appanah: Bamboo resources conservation and utilization in Malaysia, in Rao and Rao (editors) Proceedings of training course cum workshop, 10-17 May 1998, Kunming and Xishuanbanna, Yunnan, China. Malaysia - FRIM, Kepong, Kuala Lumpur, Malaysia (1999).
Google Scholar
[35]
S. C. Lakkad and J. M. Patel: Mechanical properties of bamboo, a natural composite. Fiber Science and Technology, Vol.14 No.3 (1981), pp.319-322.
DOI: 10.1016/0015-0568(81)90023-3
Google Scholar
[36]
M. A. Latif, A. Ashaari, K. Jamaludin and J.M. Zin: Effects of anatomical characteristics on the physical and mechanical properties of Bambusa bluemeana. Journal Tropical Forest Science, Vol.6 No.2 (1993), pp.159-170.
Google Scholar
[37]
S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, and K. Shimizu: Fiber texture and mechanical graded structure of bamboo. Composite: Part B, Vol.28(B) (1997), pp.13-20.
DOI: 10.1016/s1359-8368(96)00020-0
Google Scholar
[38]
V. Kumar and K. Rakesh: Improved mechanical and thermal properties of bamboo-epoxy nanocomposites, Polymer Composites (2012), pp.362-370. (.
DOI: 10.1002/pc.22155
Google Scholar
[39]
Y. Sun, L. Lin, H. Deng, J. Li, B. He, R. Sun and P. Ouyang: Structrural changes of bamboo cellulose in formic acid. Bioresources, Vol.3 No.2(2008), pp.297-315.
DOI: 10.15376/biores.3.2.297-315
Google Scholar
[40]
S. A. Bahari, M. Ahmad, K. Nordin and M. A. Jamaludin: Tensile mechanics of bamboo strips. CP1217 International Conference on Advancement of Materials and Nanotechnology (ICAMN 2007).
Google Scholar
[41]
E.Obataya, P. Kitin and H. Yamauchi: Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure. Wood Sci Technol, Vol.41 (2007),pp.358-400. (.
DOI: 10.1007/s00226-007-0127-8
Google Scholar
[42]
P.Van.der.Lugt, A.A.J.F. Van den Dobblsteen and J.J.A. Janssen: An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Construction and Building Materials, Vol.20 (2006), pp.648-656.
DOI: 10.1016/j.conbuildmat.2005.02.023
Google Scholar
[43]
K. Ghavami, C.S. Rodrigues and S. Paciornik: Bamboo: Functionally graded composite material. Asian Journal of Civil Engineering (Building and Housing), Vol.4 No.1 (2003), pp.1-10.
Google Scholar
[44]
C. Girisha, Sanjeevamurthy and G. Srinivas; Effect of alkali treatment, fiber loading and hybridization on tensile properties of sisal fiber, banana empty fruit bunch fiber and bamboo fiber reinforced thermoset composites, International Journal of Engineering Science & Advanced Technology, Vol. 2, Issue 3 (2012), pp.706-711.
Google Scholar
[45]
S. Amada and S.Untao ; Fracture properties of bamboo, Composites; Part B, Vol. 32 (2001), pp.451-459.
DOI: 10.1016/s1359-8368(01)00022-1
Google Scholar
[46]
S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase and H. Shimizu: Fiber texture and mechanical graded structure of bamboo, Composites; Part B, Vol. 28B (1997), pp.13-20.
DOI: 10.1016/s1359-8368(96)00020-0
Google Scholar
[47]
N.Nugroho and N. Ando: Development of structural composite products made from bamboo I: fundamental properties of bamboo zephyr board, J Wood Sci Vol. 46 (2000), pp.68-74.
DOI: 10.1007/bf00779556
Google Scholar
[48]
S.Biswas and P.A. Xess: Erosion Wear Behaviour of Bamboo/ Glass Fiber Reinforced Epoxy Based Hybrid Composites. International Journal of Mechanical and Industrial Engineering Vol.1 Issue.4 (2012), pp.79-83.
DOI: 10.47893/ijmie.2012.1072
Google Scholar
[49]
S. Biswas and A. Satapathy: A comparative study on erosion characteristics of red mud filled bamboo-epoxy and glass-epoxy composites. Materials and Design Vol. 31 (2010), pp.1752-1767.
DOI: 10.1016/j.matdes.2009.11.021
Google Scholar
[50]
R.Tokoro. D.M. Vu, K. Okubo, T. Tanaka, T. Fujii and T. Fujiura: How to improve mechanical properties of polylactic acid with bamboo fibers, J Mater Sci Vol. 43 (2008), pp.775-787.
DOI: 10.1007/s10853-007-1994-y
Google Scholar
[51]
N.Nugroho and N. Ando: Development of structural composite product made from bamboo II: fundamental properties of laminated bamboo lumber, J Wood Sci Vol. 47 (2001), pp.237-242.
DOI: 10.1007/bf01171228
Google Scholar
[52]
K. Okubo, T. Fujii and Y. Yamamoto: Development of bamboo-based polymer compositesand their mechanical properties, Composites: Part B, Vol.35 (2004), pp.337-383.
DOI: 10.1016/j.compositesa.2003.09.017
Google Scholar
[53]
M. M. Thwe and K. Liao: Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites, Composites Science and Technology Vol. 63 (2003), pp.375-387.
DOI: 10.1016/s0266-3538(02)00225-7
Google Scholar
[54]
M. M. Thwe and K. Liao Environmental effects on bamboo-glass/polypropylene hybrid composites, Journal of Materials Science Vol. 38 (2003), pp.363-376.
Google Scholar
[55]
M.M. Thwe and K. Liao K: Characterization Of Bamboo-Glass Fiber Reinforced Polymer Matrix Hybrid Composite, Journal of Materials Science Letters Vol. 19 ( 2000), p.1873 – 1876.
Google Scholar
[56]
C. S. Verma and V.M Chariar: Development of layered laminate bamboo composite and their mechanical properties, Composites: Part B Vol. 43 (2012), pp.1063-1069.
DOI: 10.1016/j.compositesb.2011.11.065
Google Scholar
[57]
A. Porras and A. Maranon: Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric, Composites: Part B (2012), pp.2782-2788.
DOI: 10.1016/j.compositesb.2012.04.039
Google Scholar
[58]
M. C. Yeh and Y. L. Lin: Finger joint performance of structural laminated bamboo member. J Wood Sci, Vol 58 (2012), pp.120-127. (.
DOI: 10.1007/s10086-011-1233-7
Google Scholar
[59]
W. Yao and Z. Li: Flexural behavior of bamboo-fiber-reinforced morter laminates. Cement and Concrete Research Vol.33 (2003), pp.15-19.
DOI: 10.1016/s0008-8846(02)00909-2
Google Scholar
[60]
M. Mahdavi, P. L. Clouston and S. R. Arwade; A low technology approach toward fabrication of laminated bamboo lumber, Construction and Building Materials Vol.29 (2012), pp.257-262.
DOI: 10.1016/j.conbuildmat.2011.10.046
Google Scholar
[61]
Z. Li, C. P. Liu and T. Yu; Laminate of reformed bamboo and extruded fiber reinforced cementitious plate, Journal of Materials in Civil Engineering Vol.14 Issue. 5 (2002), pp.359-365.
DOI: 10.1061/(asce)0899-1561(2002)14:5(359)
Google Scholar
[62]
F. Nogato and H. Takahashi; Intelligent functionally grader material: bamboo, Composites Engineering, Vol. 5 No.7 (1995), pp.743-751.
DOI: 10.1016/0961-9526(95)00037-n
Google Scholar