Research of Intrusion Detection Based on Ensemble Learning Model

Article Preview

Abstract:

In order to improve the detection accuracy of the intrusion detection, the proposed ensemble learning model is applied to the intrusion detection. This method can significantly improve the generalization capability and flexibly. Compared to the single classification method, despite choosing the ensemble classifiers for data detection can cause an increase of the additional overhead, ultimately the detection accuracy can be improved obviously. The experimental results with the KDD dataset further verify the significant efficiency of ensemble learning model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2376-2380

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anderson JP. Computer security thread monitoring and surveillance[R].Fort Washington,PA: Jame P Anderson Co,1980.

Google Scholar

[2] Heberlein LDias G, Levitt K et al. 1990. A Network Security Monitor [C].In: Jeff Wood, and David Wolber eds. Proceedings of the IEEE Symposium on Research in Security and Privacy. Oakland, California, 1990. Los Alamitos: IEEE Press, 296-304.

DOI: 10.1109/risp.1990.63859

Google Scholar

[3] Forrest S, Hofmeyr S A, and Somayaji. 1997. A. Computer immunology [C],In: Communications of the ACM, 40(10) 88-96.

DOI: 10.1145/262793.262811

Google Scholar

[4] Jiangxiong Luo,Susan Bridges. 2000. Mining Fuzzy Association Rules and Fuzzy Frequency Episodes for Intrusion Detection. International [J], Journal of Intelligent Systems, 15(8):687 -704.

DOI: 10.1002/1098-111x(200008)15:8<687::aid-int1>3.0.co;2-x

Google Scholar

[5] Chris Clifton, Gary Gengo. 2000. Developing custom intrusion detection filters using data mining, in: Saharon Rossett ed. 2000 Military Communications International Symposium, Los Angeles[C],In:California, 2000,Washington, DC, USA: IEEE Press, 440-443.

DOI: 10.1109/milcom.2000.904991

Google Scholar

[6] Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls: alternative data models. Proc of 1999 IEEE Symp on Security and Privacy[C], Oakland, CA, USA, 1999:133-145.

DOI: 10.1109/secpri.1999.766910

Google Scholar

[7] Mao Guojun, Wu Xudong, Chen Gong. Mining maximal frequent itemsets from data streams. Journal of Information Science, 2007, 33(3):251-262.

DOI: 10.1177/0165551506068179

Google Scholar

[8] A Blum, TMitchell. Combining labeled and unlabeled data with Co-training[C]. Proc of thellth Annual Conference on Computational Learning Theory, 1998:131-140.

DOI: 10.1145/279943.279962

Google Scholar

[9] Boser B E, Guyon I M, Vapnik V. A training algorithm for optimal margin classifier[C].In Proc of the 5th ACM Workshop on Computational Learning Theory,Pittsburgh,1992.

DOI: 10.1145/130385.130401

Google Scholar

[10] Breimanl. Bagging predictors [J]. Machine Learning, 1996, 24(2):123-140.

Google Scholar

[11] Schapire R E. The boosting approach to machine learning: An overview [EB /OL]. [2007-12-26].http:/ /www.ccls.columbia.edu /compbio /geneclass/ non_html_files/ Schapire_ boosting_review.pdf.

Google Scholar

[12] Parmanto B, Munro PW, Doyle H R. Improving committee diagnosis with resampling techniques[C]/ / Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press,1996, 8: 882-888.

Google Scholar

[13] Dietterich T G, Bakir I G. Solving multi-class learning problems via error-correcting output codes[J]. Journal of Artificial Intelligence Research, 1995, 3 (2): 263-286.

DOI: 10.1613/jair.105

Google Scholar

[14] Oza N C, Tumer K. Classifier ensembles: select real world applications, Information Fusion, 2008,9(1):4-20.

DOI: 10.1016/j.inffus.2007.07.002

Google Scholar

[15] http://kdd. ics. uci. edu/databases/kddcup99/task.html.

Google Scholar