Determination of Content of N-Butyl Pyridine Tetrafluoroborate in Ethanol by UV-Spectrum

Article Preview

Abstract:

N-butyl-pyridine tetrafluoroborate is prepared by the double decomposition reaction of BPC and NaBF4. The ionic liquid at room temperature used in the experiment has a significant absorption determined by UV spectrum within the range of 200-400nm, the maximum absorption wavelength of BP-BF4 ionic liquid in ethanol is 259nm. The standard working curve of BP-BF4 ionic liquid is y=0.03299x+0.02314 (R=0.99908). The linear range of BP-BF4 ionic liquids in the ethanol is 1-75 mg/L.The recovery rate of BP-BF4 ionic liquid which is between 99.2% and 103.4%, is measured by standard addition method in ethanol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

683-686

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. E.Visser, R. P.Swatloski, K. D. Rogers, Vol, 39 (2000) 3596.

Google Scholar

[2] J. G. Huddlesto, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. Vol, 3 (2001) 156.

Google Scholar

[3] K. N. Marsh, J. A. Boxall, R. Lichtenthaler, Fluid Phase Equilib. Vol, 219 (2004) 93.

Google Scholar

[4] V. D. Sergei, R. A. J. Bartsch, Heterocycl. Chem. Vol, 38 (2001) 265.

Google Scholar

[5] A. K. Abdul-Sada, K. R. Seddon, Eur. Mass Spectrom. Vol, 3 (1997) 245.

Google Scholar

[6] R. M. Bell, M. G. Del Pópolo, T. G. Youngs, J. Kohanoff, C. G. Hanke, B. Harper, C. C. Pinilla. Acc. Chem. Res. Vol, 40 (2007) 1138.

DOI: 10.1021/ar700065s

Google Scholar

[7] W. S. Miao, T. H. Chan. Acc. Chem. Res. Vol, 39 (2006) 897.

Google Scholar

[8] X. X. Han, D. W. Armstrong. Acc. Chem. Res. Vol, 40 (2007) 1079.

Google Scholar

[9] A. A. H. Pádua, M. F. C. Gomes, J. N. A. C. Lopes. Acc. Chem. Res. Vol, 40 (2007) 1087.

Google Scholar

[10] E. J. Maginn. Acc. Chem. Res. Vol, 40 (2007) 1200.

Google Scholar

[11] Y. Shim, D. Jeong, S. Manjari, M. Y. Choi, H. J. Kim. Acc. Chem.Res. Vol, 40 (2007) 1130.

Google Scholar

[12] L. P. N. Rebelo, J. N. C. Lopes, M. S. S. Esperan, H. J. Guedes. Acc. Chem. Res. Vol, 40 (2007) 1114.

Google Scholar

[13] C. Hardacre, J. D. Holbrey, M. Nieuwenhuyzen, T. G. A. Youngs. Acc. Chem. Res. Vol, 40 (2007) 1146.

DOI: 10.1021/ar700068x

Google Scholar

[14] J. D. Aiken, R. G. Finke. Chem. Soc. Vol, 121 (1999) 8803.

Google Scholar

[15] J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. J. Teixeira. Chem. Soc. Vol, 124 (2002) 4228.

Google Scholar

[16] G. S. Fonseca, A. P. Fonseca, S. R. Teixeira, J. Dupont. Chem. Eur.J. Vol, 9 (2003) 3263.

Google Scholar

[17] S. Vukojevic, O. Trapp, J. Grunwaldt, C. Kiener, F Schüth. Chem. Int. Ed., Vol, 44 (2005) 7978.

Google Scholar

[18] M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez, J. C. Palacios. Chem. Int. Ed. Vol, 45 (2006) 3904.

DOI: 10.1002/anie.200504285

Google Scholar

[19] G. H. Tao, L. He, W. S. Liu, L. Xu, W. Xiong, T. Wang, Y. Kou, Green Chem. Vol, 8 (2006) 639.

Google Scholar

[20] K. Fukumoto, M. Yoshizawa, H. J. Ohno. Chem. Soc. Vol, 127 (2005) 2398.

Google Scholar