Fault Diagnosis Method Based on Supervised Incremental Local Tangent Space Alignment and SVM

Article Preview

Abstract:

To enhance the effect of fault diagnosis, a new fualt diagnosis method based on supervised incremental local tangent space alignment (SILTSA) and support vector machine (SVM) is proposed. The supervised learning approach is embedded into the incremental local tangent space alignment algorithm, to realize fault feature extraction and new data processing for equipment fault signal, and then correctly classify the faults by non-linear support vector machines. The experiment result for roller bearing fault diagnosis shows that SILTSA-SVM method has better diagnosis effect to related methods

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1233-1237

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.S. Seung and D.L. Daniel. Science. 290(2000), pp.2268-2269.

Google Scholar

[2] S. Roweis and L. Saul. Science. 290(2000), pp.2323-2326.

Google Scholar

[3] M. Belkin and P. Niyogi. Neural Computation. 15(2003), pp.1373-1396.

Google Scholar

[4] Zhang Zhenyue and Zha Hongyuan. SIAM Journal on Scientific Computing. 26(2005), pp.313-338.

Google Scholar

[5] M.H. Law and A.K. Jain. Pattern Analysis and Machine Intelligence, IEEE Transcations on, 28(2006), pp.377-391.

Google Scholar

[6] O. Kouropteva, O. Okun and N. IPietik. Pattern recognition. 38(2005), pp.1764-1767.

Google Scholar

[7] Xiaoming Liu, Jianwei Yin and Zhilin Feng, etl. Artificial Neural Networks in Pattern Recognition, Ulm, Germany, 2006: 107-121.

Google Scholar

[8] D. Ridder, O. Kouropreva and O. Okun. Proceedings of Artifical Neural Networks and Neural Information Processing, 2003, LNCS2714, Springer, 333-341.

Google Scholar

[9] L. Saul and S. Roweis. Journal of Machine Learning Research, 4(2002), pp.119-155.

Google Scholar

[10] Information on http: /www. eecs. case. edu/laboratory/bearing 12 13 14 15 16 17 18 19 20 0.

Google Scholar

9 1 近 近近邻 k siltsa-svm iltsa-svm 18 19 20 21 22 23 24 25 26 0.

Google Scholar

9 1 近 近近邻 k siltsa-svm iltsa-svm 20 21 22 23 24 25 26 27 28 0.

Google Scholar

9 1 近 近近邻 k siltsa-svm iltsa-svm 12 13 14 15 16 17 18 19 20 0.

Google Scholar

9 1 近 近近邻 k siltsa-svm iltsa-svm 18 19 20 21 22 23 24 25 26 0.

Google Scholar

9 1 近 近近邻 k siltsa-svm iltsa-svm 20 21 22 23 24 25 26 27 28 0.

Google Scholar

9 1 近 近近邻 k 正 正 正 识 识 siltsa-svm iltsa-svm m=12 m=12 m=18 m=18 m=20 m=20 The highest correct recognition rate Number of neighbors k Fig 1. The result of the fualt diagnosis to training samples (left) and test samples(right).

Google Scholar