[1]
J. L. Moiola, H. G. Chiacchiarini, A. C. Desages, Bifurcations and Hopf degeneracies in nonlinear feedback systems with time delays, Int. J. Bifurcation and Chaos, 1996, 6(4): 661~672.
DOI: 10.1142/s0218127496000333
Google Scholar
[2]
R. H. Plaut, J. C. Hsieh, Non-linear structural vibrations involving a time delay in damping, J. Sound and Vibration, 1987, 117(3): 497~510.
DOI: 10.1016/s0022-460x(87)80068-8
Google Scholar
[3]
H. Hu, E.H. Dowell, L.N. Virgin, Resonances of a harmonically forced Duffing oscillators with time delasy state feedback, Nonlinear Dyn., 1998, 15(4): 311~327.
Google Scholar
[4]
A. H. Nayfeh,D T Mook,Nonlinear Oscillations, Wiiley, New York, (1979).
Google Scholar
[5]
A. H. Nayfeh, Introduction to Perturbation Techniques, Wiiley, New York, (1981).
Google Scholar
[6]
Song Y, Yu X, Chen G, et al., Time delayed repetitive learning control for chaotic systems, Int. J. Bifurcation and Chaos, 1996, 6(4): 661~672.
Google Scholar
[7]
Just W, et al. Mechanism of time-delayed feedback control. Physical Review Letters, 1997, 78(2): 203~206.
Google Scholar
[8]
Just W, et al. Influence of stable Floquet exponents on time-delayed feedback control. Physical Review E, 2000, 61: 5045~5056.
DOI: 10.1103/physreve.61.5045
Google Scholar
[9]
Xu J, Lu QS, Hopf bifurcation of time-delay lienared equations. Int. J. Bifurcation and Chaos, 1999, 9: 939~951.
DOI: 10.1142/s0218127499000675
Google Scholar
[10]
J. Xu, K. W. Chung. Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D. 2003, 180: 17~39.
DOI: 10.1016/s0167-2789(03)00049-6
Google Scholar
[11]
Maccari A Vibration control for primary resonance of van der Pol oscillator by a time delay state feedback. Int. J. Non-linear Mechanics, 2003, 38: 128~131.
DOI: 10.1016/s0020-7462(01)00056-7
Google Scholar
[12]
Chen G, Moiola J L, Wang H O, Bifurcation control: theories, methods, and application, Int. J. of Bifurcation and Chaos. 2000, 10: 511~548.
DOI: 10.1142/s0218127400000360
Google Scholar
[13]
Alvarez J, Curiel L E, Bifurcations and chaos in a linear control system with saturated input, Int. J. Bifurcation ans Chaos. 1997, 7: 1811~1822.
DOI: 10.1142/s0218127497001382
Google Scholar