Elasto-Plastic Cellular Automaton Simulation of Fracturing Process in Single Pre-Fractured Rocks under Uniaxial Compression

Article Preview

Abstract:

Rock is a natural heterogeneous material and presents complicated behaviors in the fracturing process. It is prevail to study the basic failure mechanism of rocks via numerical simulation. Based on the elasto-plastic cellular automaton (EPCA) model, this paper simulates single pre-fractured rock fracturing process with consideration of rock heterogeneity on the meso-scale. In this model, the Weibull’s distribution, which characterizes heterogeneity with the homogeneous index m and the random seed parameter s, is adopted to describe the distribution of mechanical parameters of rock specimens such as cohesive strength, Young’s modulus, etc. Pre-existing crack rock specimens with different homogeneous index or the different random seed are simulated by EPCA under uniaxial compression. Numerical results show that heterogeneity has great influence on pre-fractured rock failure process, final failure modes, and the uniaxial compressive strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

383-386

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bobet, H.H. Einstein. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci. Vol. 35(7)(1998) , pp.863-888.

DOI: 10.1016/s0148-9062(98)00005-9

Google Scholar

[2] C.A. Tang, K. Kaiser. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure part I: Fundamentals. Int. J. Rock Mech. Min. Sci. Vol. 35(2) (1998), pp.113-121.

DOI: 10.1016/s0148-9062(97)00009-0

Google Scholar

[3] H. Zhou, X.T. Feng, M.T. Li, S.M. Wang, Y.J. Wang. A new meso-mechanical approach for modeling the rock fracturing process. Int. J. Rock Mech. Min. Sci. Vol. 41 (2004), p.420.

DOI: 10.1016/j.ijrmms.2003.12.016

Google Scholar

[4] B. Shen. The mechanism of fracture coalescence in compression-experimental study and numerical simulation. Eng. Fract. Mech. Vol. 51(1) (1995), pp.73-85.

DOI: 10.1016/0013-7944(94)00201-r

Google Scholar

[5] X.T. Feng, P.Z. Pan, H. Zhou. Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. Int. J. Rock Mech. Min. Sci. Vol. 43 (2006), pp.1091-1108.

DOI: 10.1016/j.ijrmms.2006.02.006

Google Scholar

[6] P.Z. Pan, X.T. Feng, J.A. Hudson. Numerical simulations of Class I and Class II uniaxial compression curves using an elasto-plastic cellular automaton and a linear combination of stress and strain as the control method. Int. J. Rock Mech. Min. Sci. Vol. 43 (2006).

DOI: 10.1016/j.ijrmms.2006.02.005

Google Scholar

[7] P.Z. Pan, W.X. Ding, X.T. Feng, H.Y. YAO, H. Zhou. Research on influence of pre-existing crack geometrical and material properties on crack propagation in rocks. Chin. J. Rock Mech. Eng. Vol. 27(9)(2008), pp.1882-1889. (in Chinese).

Google Scholar