Multi-Scroll Chaotic System Based on Even-Symmetric Step-Wave Sequence Control

Article Preview

Abstract:

This paper presents a new approach for generating multi-scroll chaotic attractors. First, a new double scroll chaotic system with piecewise linearity and invariance under the transformationis introduced. Then, by using the even-symmetric step-wave sequence switching control method in this system to extend the number of saddle-focus points of index 2, the intended multi-scroll chaotic attractors can be obtained. A circuit for generating multi-scroll chaotic attractors is designed, and the experimental results are also given, confirming the consistency of the theory design and circuit implementation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

760-766

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lü J H, Chen G R (2006) Generating multiscroll chaotic attractors, Theories, methods and applications, Int. J. Bifurc. Chaos 116(7): 775-858.

DOI: 10.1142/s0218127406015179

Google Scholar

[2] Chua L O, Komuro M, Matsumoto T (1986) The double scroll family, IEEE Trans. Circuits Syst. I 33(7): 1073-1117.

DOI: 10.1109/tcs.1986.1085869

Google Scholar

[3] Suykens J A K, Vandewalle J (1991) Quasilinear approach to nonlinear systems and the design of n-double scroll (n = 1; 2; 3; 4; . . . ), G, IEE Proc 138(4): 595-603.

DOI: 10.1049/ip-g-2.1991.0098

Google Scholar

[4] Elwakil A S, Özoguz S (2006) Multiscroll chaotic oscillators: the nonautonomous approach, IEEE Trans. Circuits Syst 153(7): 862-866.

DOI: 10.1109/tcsii.2006.880032

Google Scholar

[5] Tang K S, Zhong G Q, Chen G R, Man K F (2001) Generation of n−scroll attractors via sine function, IEEE Trans. Circuits Syst 48(2): 1369-1372.

DOI: 10.1109/81.964432

Google Scholar

[6] Zhong G Q, Man K F, Chen G R (2002) A systematic approach to generating n−scroll attractors, Int. J. Bifurc. Chaos 12(7): 2907-2915.

DOI: 10.1142/s0218127402006230

Google Scholar

[7] Yalcin M E, Suykens J A K, Vandewalle J (2000) Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua's circuit, IEEE Trans. Circuits Syst 47(5): 425-429.

DOI: 10.1109/81.841929

Google Scholar

[8] Yalcin M E, Suykens J A K, Vandewalle J (2002) Families of scroll grid attractors, Int. J. Bifurc. Chaos 112(7): 23-41.

DOI: 10.1142/s0218127402004164

Google Scholar

[9] Lü J H, Zhou T, Chen G R, Yang X (2002) Generating chaos with a switching piecewise-linear controller, Chaos 112(5): 344-349.

DOI: 10.1063/1.1478079

Google Scholar

[10] Lü J H, Han F, Yu X, Chen G (2004) Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method, Automatica 40(5): 1677-1687.

DOI: 10.1016/j.automatica.2004.06.001

Google Scholar

[11] Yu S M, Lü J H, Leung H, Chen G R (2005) Design and implementation of n-scroll chaotic attractors from a general Jerk circuit, IEEE Transactions on Circuits 52(8): 1459-1476.

DOI: 10.1109/tcsi.2005.851717

Google Scholar

[12] Yu S M, Tang K S, Chen G R (2007) "Generation of n×m-scroll attractors under a Chua-circuit framework, Int. J. Bifurc. Chaos 17(5): 3951-3964.

DOI: 10.1142/s0218127407019809

Google Scholar

[13] Yu S M, Lü J H, Chen G R, Yu X H (2012) Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops., IEEE Transactions on Circuits Syst 34(8): 1015-1028.

DOI: 10.1109/tcsi.2011.2180429

Google Scholar