Research on Algal Bloom Control for Environment Engineering

Article Preview

Abstract:

Aquatic plants inhibit algae through nutrient competition, sludge sedimentation and the release of allelochemicals in three ways. Investigating Pistia stratiotes L in East Lake, Shao (2001) observed removal rate of the BOD5 achieved more than 70%; the total nitrogen removal efficiency was 60%, the total phosphorus removal efficiency was approximately 70% or more, and this biochemical inhibitory effect may promote algal settlement. Ho Pool (1999) found that the Rhizoma AcoriGraminei could cause a water total nitrogen (TN) removal rate of 87.4%, a total phosphorus (TP) removal rate of 43.9%, and a dissolved oxygen (DO) increase of 26.6%. These studies suggest that through the promotion of the lake TN and TP, aquatic plants influence bio-deposition into sediments, in addition to their role in the nutrient cycling of lakes. Furthermore, many studies have shown that aquatic macrophytes can produce allelochemicals that could inhibit the growth of algae (Donk & Bund, 2002; A. Gross & Boyd, 1998; Elisabeth M. Gross, 2003; E. M. Gross & Sütfeld, 1994; Mulderij, Smolders, & Van Donk, 2006; Mulderij, Van Nes, & Van Donk, 2007).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

971-974

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Benndorf, J. Ü., Böing, W., Koop, J., & Neubauer, I. (2002). Top‐down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology, 47(12), 2282-2295.

DOI: 10.1046/j.1365-2427.2002.00989.x

Google Scholar

[2] Bossuyt, B. T. A., & Janssen, C. R. (2005). Copper regulation and homeostasis of Daphnia magna and Pseudokirchneriella subcapitata : influence of acclimation. Environmental Pollution, 136(1), 135-144.

DOI: 10.1016/j.envpol.2004.11.024

Google Scholar

[3] Bowen, S. (1982). Feeding, digestion and growth [of Tilapia] qualitative considerations. Brussaard, C. P. D. (2004). Viral Control of Phytoplankton Populations—a Review1. Journal of Eukaryotic Microbiology, 51(2), 125-138.

DOI: 10.1111/j.1550-7408.2004.tb00537.x

Google Scholar

[4] Donk, E. V., & Bund, W. J. V. D. (2002). Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities—allelopathy versus other mechanisms. Aquatic Botany, 72, 261-274.

DOI: 10.1016/s0304-3770(01)00205-4

Google Scholar

[5] Drenner, R., & Hambright, K. (1999). Biomanipulation of fish assemblages as a lake restoration technique. Archiv Fur Hydrobiologie, 146(2), 129-165.

DOI: 10.1127/archiv-hydrobiol/146/1999/129

Google Scholar

[6] Gross, A., & Boyd, C. E. (1998). A digestion procedure for the simultaneous determiation of total nitrogen and total phosphorus in pond water. Journal of the world aquaculture society, 29(3), 300-303.

DOI: 10.1111/j.1749-7345.1998.tb00650.x

Google Scholar

[7] Gross, E. M. (2003). Allelopathy of Aquatic Autotrophs. Critical Reviews in Plant Sciences, 22(3-4), 313-339. doi: 10. 1080/713610859.

DOI: 10.1080/713610859

Google Scholar

[8] Gross, E. M., & Sütfeld, R. (1994). Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum Spicatum L. Acta Horticultura, 381, 710-716.

DOI: 10.17660/actahortic.1994.381.103

Google Scholar

[9] Hosper, H. (1997). Clearing lakes: An ecosystem approach to the restoration and management of shallow lakes in the Netherlands: Landbouwuniversiteit Wageningen.

Google Scholar

[10] Liu, J. (1999). Advanced Hydrobiology. Beijing: Science Press.

Google Scholar

[11] Lovejoy, C., Bowman, J. P., & Hallegraeff, G. M. (1998).

Google Scholar

[12] Matveev, V., Matveeva, L., & Jones, G. J. (1994).

Google Scholar

[13] Mayali, X., & Azam, F. (2004). Algicidal Bacteria in the Sea and their Impact on Algal Blooms1. Journal of Eukaryotic Microbiology, 51(2), 139-144.

DOI: 10.1111/j.1550-7408.2004.tb00538.x

Google Scholar

[14] Mehner, T., Benndorf, J., Kasprzak, P., & Koschel, R. (2002). Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biology, 47(12), 2453-2465.

DOI: 10.1046/j.1365-2427.2002.01003.x

Google Scholar

[15] Mulderij, G., Smolders, A. J. P., & Van Donk, E. (2006). Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton. Freshwater Biology, 51(3), 554-561. doi: 10. 1111/j. 1365-2427. 2006. 01510. x.

DOI: 10.1111/j.1365-2427.2006.01510.x

Google Scholar