Improvement of Zr-N Diffusion Barrier Performance in Cu Metallization by Insertion of a Thin Zr Layer

Article Preview

Abstract:

In order to increase the failure temperature of Zr-N diffusion barrier for Cu, the effect of insertion of a thin Zr layer into Zr-N film on Zr-N diffusion barrier performance in Cu metallization was investigated by means of X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and 4-point probe technique. XRD,SEM ,AES and FPP results show that the insertion of a thin Zr layer into Zr-N film improves barrier properties significantly when the ZrN / Zr/ZrN barrier layers are deposited by RF reactive magnetron sputtering and Zr-N(10nm)/Zr (5nm)/Zr-N(10nm) barrier tolerates annealing at 700°C for 1 h without any breaking and agglomerating Cu film. This interpretes that insertion of a thin Zr layer into Zr-N film is attributed to the densification of grain boundaries in ZrN/Zr/ZrN films followed by the reduction of fast diffusion of Cu through ZrN /Zr/ ZrN multilayered films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1148-1152

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.C. Perng, J.B. Yeh, K.C. Hsu, S.W. TSai. Thin Solid Fillns[J]. 2010, 518(6): 1648-1652.

Google Scholar

[2] B. T. Liu, J.H. Chen, X.H. Li, et al. J Alloys Compounds[J], 2011, 509: 8093-8096.

Google Scholar

[3] J.D. Lee H.Y. Kwon M.J. Kim E.J. Lee H.S. Lee S.H. Lee. Renewable Energy[J], 42(2012)1-3.

Google Scholar

[4] J. S. Kwak, H. K. Baika, J. H. Kim, et al. Appl Phys Lett[J], 1998, 72(22): 2832.

Google Scholar

[5] E. Kolawa, P. J. Pokcla, J. S. Reid, et al. Appl Surf Sci[J], 1991, 53: 373.

Google Scholar

[6] Pelleg Joshua, Sade G. J Appl Phys[J], 2002, 91(9): 6099.

Google Scholar

[7] Lee C S, Gong H, Liu R, et al. [J]. J Appl Phys, 2001, 90(8): 3822.

Google Scholar

[8] Chu J P, Lin C H, Sun P L. J Electrochem Soc[J], 2009, 156(7): H540.

Google Scholar

[9] L. L. Liu, H. Y. Huang, R. Fu, et al. Thin Solid Films [J], 2009, 8: 201.

Google Scholar

[10] T. N. Arunagiri, Y. Zhang, O. Chyan, et al. Appl Phys Lett[J], 2005, 86(8): 083104.

Google Scholar

[11] Q. X. Wang, S. H. Liang, X. H. Wang, Z. K. Fan, Vacuum[J], 84(2010)1270-1274.

Google Scholar

[12] R. A. Araujo, J. Yoon, X. h. Zhang, et al. Thin Solid Films[J], 2008, 516: 5103.

Google Scholar

[13] T. Oku, E. Kawakami, M. Uekubo, et al. Appl Surf Sci[J]., 1996, 99: 265.

Google Scholar

[14] R. Hubner, M. Hecker, N. Mattern, et al. Thin Solid Films[J]., 2003, 437: 248.

Google Scholar

[15] K.C. Hsu D.C. Perng Y.C. Wang. J of Alloys and Compounds[J], 516(2012)102-106.

Google Scholar

[16] P. Majumder, C. Takoudis. Nanotechnology[J], 2008, 19: 205202.

Google Scholar

[17] Salaün A Lintanf, Mantoux A, Blanquet E, et al. J Electrochem Soc[J]., 2009, 156(5): H311.

Google Scholar

[18] Y. Wang, F. Cao, L. Shao, et al. Thin Solid Films[J], 2009, 517: 5593.

Google Scholar

[19] M. B. Takeyama, A. Noya, Y. Nakadai, et al. Appl Surf Sci [J], 2009, 256(4): 1222.

Google Scholar

[20] Z. X. Song, J .A. Wang, Y . H . Li, et al. Microelectron Eng[J], 2010, 87(3): 391.

Google Scholar

[21] J. S. Kwak, H. K. Baik, J. H. Kim, et al. Applied Physics Letters [J], 1998, 72: 2832-2834.

Google Scholar

[22] S.H. Kim, K.T. Nam. J . Vac. Sci. Technol[J], 2003, B 21(2): 804-805.

Google Scholar

[23] S. X. Song, Y. Z. Liu, D. L. Mao, et al. Thin Solid Films [J], 2005, 476(1): 142-147.

Google Scholar