An Introduction to Viewpoint Selection in Volume Visualization

Article Preview

Abstract:

Scientific researches are always accompanied with a large number of complex data. Thus, it is important to view and analysis these data or objects in a much more efficient way. Viewpoint selection can improve both the speed of rendering and the efficiency of data understanding, became a hot topic in research, and is applied to various research areas. Viewpoint selection considerably influences the amount of information contained in the projected images, has been extensively studied in many areas such as: volume rendering, image-based modeling, object recognition, etc. most of the studies utilizing the information theoretical framework. This paper reviews the relevant literatures on this topic by summarizing the development and application of the technology, and put forward some ideas for future development.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2197-2202

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U.D. Bordoloi, and H.W. Shen, View selection for volume rendering, Visualization, 2005. VIS 05. IEEE, 2005, pp.487-494.

DOI: 10.1109/visual.2005.1532833

Google Scholar

[2] P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich, Viewpoint Selection using Viewpoint Entropy, VMV '01, Aka GmbH, 2001, pp.273-280.

Google Scholar

[3] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita, A feature-driven approach to locating optimal viewpoints for volume visualization, Visualization, 2005. VIS 05. IEEE, 2005, pp.495-502.

DOI: 10.1109/vis.2005.4

Google Scholar

[4] J. Tao, J. Ma, C. Wang, and C. Shene, A Unified Approach to Streamline Selection and Viewpoint Selection for 3D Flow Visualization, Visualization and Computer Graphics, IEEE Transactions on, vol. PP, no. 99, 2012, p.1.

DOI: 10.1109/tvcg.2012.143

Google Scholar

[5] M. Feixas, M. Sbert, and F. Gonz A Lez, A unified information-theoretic framework for viewpoint selection and mesh saliency, ACM Trans. Applied Perception (TAP), vol. 6, no. 1, 2009, p.1.

DOI: 10.1145/1462055.1462056

Google Scholar

[6] G. Ji, and H. Shen, Dynamic View Selection for Time-Varying Volumes, Ieee Transactions On Visualization And Computer Graphics, vol. 12, no. 5, 2006, pp.1109-1116.

DOI: 10.1109/tvcg.2006.137

Google Scholar

[7] Z. Ziyi, N. Ahmed, and K. Mueller, iView: A Feature Clustering Framework for Suggesting Informative Views in Volume Visualization, Visualization and Computer Graphics, IEEE Transactions on, vol. 17, no. 12, 2011, p.1959-(1968).

DOI: 10.1109/tvcg.2011.218

Google Scholar

[8] Z. Yousai, and W. Bin, Optimal viewpoint selection for volume rendering based on shuffled frog leaping algorithm, Progress in Informatics and Computing (PIC), 2010 IEEE International Conference on, 2010, pp.706-709.

DOI: 10.1109/pic.2010.5687914

Google Scholar

[9] P. Vázquez, M. Feixas, M. Sbert, and A. Llobet, Viewpoint Entropy: A New Tool for Obtaining Good Views of Molecules, Eurographics Association, 2002, pp.183-188.

Google Scholar

[10] W. Yanni, Z. Dibin, Z. Yao, W. Kangjian, and Y. Tingjun, Viewpoint Selection Using PSO Algorithms for Volume Rendering, Computer and Computational Sciences, 2007. IMSCCS 2007. Second International Multi-Symposiums on, 2007, pp.286-291.

DOI: 10.1109/imsccs.2007.56

Google Scholar

[11] M. Sbert, D. Plemenos, M. Feixas, and F. Gonzalez, Viewpoint Quality: Measures and Applications, Eurographics Association, 2005, pp.185-192.

Google Scholar

[12] J.J. Koenderink, and A.J. Doorn, The internal representation of solid shape with respect to vision, vol. 32, no. 4, 1979, pp.211-216.

DOI: 10.1007/bf00337644

Google Scholar

[13] J.J. Koenderink, and A.J. Doorn, The singularities of the visual mapping, Bioogical Cybernetics, vol. 24, 1976, pp.51-59.

DOI: 10.1007/bf00365595

Google Scholar

[14] T. Arbel, and F.P. Ferrie, Viewpoint selection by navigation through entropy maps, Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, 1999, pp.248-254.

DOI: 10.1109/iccv.1999.791227

Google Scholar

[15] K.P. Murphy, Elements of Information Theory, Wiley, (1991).

Google Scholar

[16] R.E. Blahut, Principles and practice of information theory, Addison-Wesley Longman Publishing Co., Inc., (1987).

Google Scholar

[17] P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich, Automatic View Selection Using Viewpoint Entropy and its Applications to Image-based Modelling., Comput. Graph. Forum, vol. 22, no. 4, 2003, pp.689-700.

DOI: 10.1111/j.1467-8659.2003.00717.x

Google Scholar

[18] S. Fleishman, D. Cohen-Or, and D. Lischinski, Automatic Camera Placement for Image-Based Modeling., Comput. Graph. Forum, vol. 19, no. 2, 2000, pp.101-110.

DOI: 10.1111/1467-8659.00447

Google Scholar

[19] J. Rigau, M. Feixas, and M. Sbert, New Contrast Measures for Pixel Supersampling, Springer-Verlag London Limited, 2002, pp.439-451.

DOI: 10.1007/978-1-4471-0103-1_28

Google Scholar

[20] P. Barral, G. Dorme, and D. Plemenos, Visual understanding of a scene by automatic movement of a camera, International Conference GraphiCon'99, (1999).

Google Scholar

[21] T. Kamada, and S. Kawai, A simple method for computing general position in displaying three-dimensional objects, Computer Vision, Graphics, and Image Processing, vol. 41, no. 1, 1988, pp.43-56.

DOI: 10.1016/0734-189x(88)90116-8

Google Scholar

[22] P. Barral, G. Dorme, and D. Plemenos, Scene understanding techniques using a virtual camera., (2000).

Google Scholar

[23] I. Viola, M. Feixas, M. Sbert, and M.E. Groller, Importance-Driven Focus of Attention, Visualization and Computer Graphics, IEEE Transactions on, vol. 12, no. 5, 2006, pp.933-940.

DOI: 10.1109/tvcg.2006.152

Google Scholar

[24] L. Teng-Yok, O. Mishchenko, S. Han-Wei, and R. Crawfis, View point evaluation and streamline filtering for flow visualization, Pacific Visualization Symposium (PacificVis), 2011 IEEE, 2011, pp.83-90.

DOI: 10.1109/pacificvis.2011.5742376

Google Scholar

[25] P. Vázquez, M. Feixas, M. Sbert, and A. Llobet, Realtime automatic selection of good molecular views, Computers & Graphics, vol. 30, no. 1, 2006, pp.98-110.

DOI: 10.1016/j.cag.2005.10.022

Google Scholar

[26] C. Ming-Yuen, Q. Huamin, C. Ka-Kei, M. Wai-Ho, and W. Yingcai, Relation-Aware Volume Exploration Pipeline, Visualization and Computer Graphics, IEEE Transactions on, vol. 14, no. 6, 2008, pp.1683-1690.

DOI: 10.1109/tvcg.2008.159

Google Scholar

[27] J. O'Rourke, Art gallery theorems and algorithms, Oxford University Press, Inc., (1987).

Google Scholar

[28] C.A. Gran, P. Vázquez, and M.F. González, Way-Finder: Guided Tours Through Complex Walkthrough Models., Comput. Graph. Forum, vol. 23, no. 3, 2004, pp.499-508.

DOI: 10.1111/j.1467-8659.2004.00781.x

Google Scholar

[29] L. Wixson, Viewpoint selection for visual search, Computer Vision and Pattern Recognition, 1994. Proceedings CVPR '94., 1994 IEEE Computer Society Conference on, 1994, pp.800-805.

DOI: 10.1109/cvpr.1994.323902

Google Scholar

[30] P. Vázquez, and M. Sbert, Automatic indoor scene exploration, 2003, pp.13-24.

Google Scholar

[31] P. Vázquez, On the selection of good views and its application to computer graphics., phdVaz03, Barcelona (Spain), (2003).

Google Scholar

[32] D. Plemenos, Exploring virtual worlds: Current techniques and future issues, 2003, pp.5-10.

Google Scholar

[33] D. Sokolov, D. Plemenos, and K. Tamine, Methods and data structures for virtual world exploration, The Visual Computer, vol. 22, no. 7, 2006, pp.506-516.

DOI: 10.1007/s00371-006-0025-3

Google Scholar

[34] M. Eusuff, K. Lansey, and F. Pasha, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization, Engineering Optimization, vol. 38, no. 2, 2006, pp.129-154.

DOI: 10.1080/03052150500384759

Google Scholar