Multiple Giant Clusters in Percolation of Random Networks

Article Preview

Abstract:

Classical percolation processes on random networks always have only one giant cluster after the transition. Recently, percolation with multiple giant clusters has been observed and attracted much attention. In this paper, we show three simple but different models which would lead to multiple giant clusters. The evolution of these models is discussed respectively and they are supported by numerical simulations. The study of these new models may present a deep understanding of the emergence of multiple giant clusters in random networks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2288-2292

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. E. J. Newman, Networks: An introduction. New York: Oxford University Press, (2010).

Google Scholar

[2] D. Stauffer and A. Aharony, Introduction to Percolation Theory. London: Taylor & Francis, (1994).

Google Scholar

[3] M. Sahimi, Applications of Percolation Theory. London: Taylor & Francis, (1994).

Google Scholar

[4] P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., vol. 5, 1960, pp.17-61.

Google Scholar

[5] E. Ben-Naim and P. L. Krapivsky, Percolation with multiple giant clusters, J. Phys. A: Math. Gen., vol. 38, 2005, pp. L417-L423, doi: 10. 1088/0305-4470/38/23/L01.

DOI: 10.1088/0305-4470/38/23/l01

Google Scholar

[6] W. Chen and R. M. D'Souza, Explosive Percolation with Multiple Giant Components, Phys. Rev. Lett., vol. 106, 2011, p.115701, doi: 10. 1103/PhysRevLett. 106. 115701.

Google Scholar

[7] Yang Zhang, Wei Wei, Binghui Guo, Renquan Zhang and Zhiming Zheng, Formation mechanism and size features of multiple giant clusters in generic percolation processes, Phys. Rev. E, vol. 86, 2012, p.051103, doi: 10. 1103/PhysRevE. 86. 051103.

DOI: 10.1103/physreve.86.051103

Google Scholar

[8] B. Bollobás, Random Graphs, 2nd ed. Cambridge, England: Cambridge University Press, (2001).

Google Scholar

[9] N. A. M. Araújo and H. J. Herrmann, Explosive Percolation via Control of the Largest Cluster, Phys. Rev. Lett., vol. 105, 2010, p.035701, doi: 10. 1103/PhysRevLett. 105. 035701.

DOI: 10.1103/physrevlett.105.035701

Google Scholar

[10] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, vol. 64, 2001, p.026118, doi: 10. 1103/PhysRevE. 64. 026118.

DOI: 10.1103/physreve.64.026118

Google Scholar

[11] B. Bollobás, The evolution of random graphs, Trans. Amer. Math. Soc., vol. 286, 1984, pp.257-274, doi: 10. 1090/S0002-9947-1984-0756039-5.

DOI: 10.1090/s0002-9947-1984-0756039-5

Google Scholar