[1]
J. S. Goldstein, I.S. Reed and L. L . Scharf, A multistage representation of the Wiener filter based on orthogonal projections, IEEE Transactions on Information Theory, vol. 44, no. 7, pp.2943-2959, Nov. (1998).
DOI: 10.1109/18.737524
Google Scholar
[2]
S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. PAMI, vol. 11, no. 7, pp.674-693, July, (1989).
DOI: 10.1109/34.192463
Google Scholar
[3]
M. Lysaker, A. Lundervold and X.C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. on Image Processing, vol. 12, no. 12, pp.1579-1590, Dec. (2003).
DOI: 10.1109/tip.2003.819229
Google Scholar
[4]
M.J. Black, G. Sapiro, D.H. Marimont and D. Heeger. Robust anisotropic diffusion, IEEE Trans. on Image Processing., vol. 7, no. 3, pp.421-432, Mar. (1998).
DOI: 10.1109/83.661192
Google Scholar
[5]
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Proc. Of the 1998 IEEE Int. Con. on Com. Vision, Bombay, India, pp.839-846.
Google Scholar
[6]
L. Corbalan, G. Osella Massa, C. Russo, L. Lanzarini and A. De Giusti. Image recovery using a new nonlinear adaptive filter based on neural networks, in 28th Int. Conf. Information Technology Interfaces, Cavtat, Croatia, June 19-22, 2006, pp.355-360.
DOI: 10.1109/iti.2006.1708506
Google Scholar
[7]
T.A. Cheema, I.M. Qureshi and A. Hussain, Blind image deconvolution using space-variant neural network approach., Electronics Letters, vol. 41, no. 6, pp.308-309, Mar. (2005).
DOI: 10.1049/el:20057273
Google Scholar
[8]
Y.H. Pao. Adaptive Pattern Recognition and Neural Networks. Reading, MA: Addison-Wesley, (1989).
Google Scholar
[9]
Y.H. Pao, S.M. Phillips and D.J. Sobajic, Neural-net computing and the intelligent control systems, Int. J. Contr., vol. 56, no. 2, pp.263-289, (1992).
DOI: 10.1080/00207179208934315
Google Scholar
[10]
G. L. Sicuranza and A. Carini, Adaptive recursive FLANN filters for nonlinear active noise control, in ICASSP 2011, pp.4312-4315.
DOI: 10.1109/icassp.2011.5947307
Google Scholar
[11]
G. L. Sicuranza and A. Carini, A generalized FLANN filter for nonlinear active noise control., IEEE Trans. on Audio, Speech and Language Processing, vol. 19, no. 8, Nov. (2011).
DOI: 10.1109/tasl.2011.2136336
Google Scholar
[12]
W.D. Wang and C.T. Yen, Reduced-decision feedback FLANN nonlinear channel equalizer for digital communication systems, IEE Proc. Commun., vol. 151, no. 4, pp.305-311, Aug. (2004).
DOI: 10.1049/ip-com:20040465
Google Scholar
[13]
J.C. Patra, N.C. Thanh and P.K. Meher, Computationally efficient FLANN-based intelligent stock price prediction system, in Proceedings of International Joint Conference on Neural Networks, Atlanta Georgia, USA, june 14-19, 2009, pp.2431-2438.
DOI: 10.1109/ijcnn.2009.5178594
Google Scholar
[14]
J.S. Lee. Digital image enhancement and noise filtering by use of local statistics,. IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-2, pp.165-168, Mar. (1980).
DOI: 10.1109/tpami.1980.4766994
Google Scholar