[1]
Kachouie, Nezamoddin N., Alirezaie, Javad, Raahemifar, Kaamran. Genetically derived fuzzy C-means clustering algorithm for segmentation. Canadian Conference on Electrical and Computer Engineering, 2003, v 2, 1119-1122.
DOI: 10.1109/ccece.2003.1226093
Google Scholar
[2]
Ronhua Tao, Jie Chen, Biao chen, Chuihua Liu. GLCM and Fuzzy Clustering for Ocean Features Classification. Proc of the 2010 IEEE Int'l. Conf on MVHI, 1340-1343.
Google Scholar
[3]
Xizhao Wang, Yadong Wang, Lijuan Wang. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters 25(2004) 1123-1132.
DOI: 10.1016/j.patrec.2004.03.008
Google Scholar
[4]
Krinidis, S. A Robust Fuzzy Local Information C-Means Clustering Algorithm. Image Processing, IEEE Transactions on Date of Publication: May 2010, Volume: 19, Issue: 5 , Page(s): 1328 – 1337.
DOI: 10.1109/tip.2010.2040763
Google Scholar
[5]
Sivakumar, S., Chandrasekar, C. Lungs image segmentation through weighted FCM. Recent Advances in Computing and Software Systems (RACSS), 2012 International Conference, Page(s): 109 – 113.
DOI: 10.1109/racss.2012.6212707
Google Scholar
[6]
Zhang D, Kamel M, Elmasry M. Fuzzy clustering neural network(FCNN): competitive learning and parallel architecture. Intellingent and Fuzzy Systems, v 2, 289-298(1994).
DOI: 10.3233/ifs-1994-2402
Google Scholar
[7]
Yu J, Huan HK, Tian SF. An efficient optimality test for the fuzzy C-means algorithm. Proc of the 2002 IEEE Int'l. Conf on Fuzzy Systems. 789-795(2002).
Google Scholar
[8]
Tian Junwei, Huang Yongxuan. Histogram Constraint Based Fast FCM Cluster Image Segmentation. Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on Topic(s): Components, Circuits, Devices & Systems ; Computing & Processing (Hardware/Software) ; Power, Energy, & Industry Applications. Page(s): 1623 - 1627.
DOI: 10.1109/isie.2007.4374847
Google Scholar