Robust Feature Points Extraction Based on Harris and SIFT

Article Preview

Abstract:

This article presents a novel approach to extract robust local feature points of video sequence in digital image stabilization system. Robust Harris-SIFT detector is proposed to select the most stable SIFT key points in the video sequence where image motion is happened due to vehicle or platform vibration. Experimental results show that the proposed scheme is robust to various transformations of video sequences, such as translation, rotation and scaling, as well as blurring. Compared with the current state-of-the-art schemes, the proposed scheme yields better performances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3500-3504

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Xu, L. D., Lin, X. G. Digital image stabilization Based on Circular Block Matching [J]. IEEE Transactions on Consumer Electronics. 2006: 52 (2): 566-574.

DOI: 10.1109/tce.2006.1649681

Google Scholar

[2] Sato, K. Control techniques for optical image stabilizing system[J]. IEEE Transactions on Consumer Electronics. 1993: 39(3): 461-466.

DOI: 10.1109/30.234621

Google Scholar

[3] Vella, F., Castorina, A., Mancuso, M., et al. Digital image stabilization by adaptive block motion vectors filtering [J]. IEEE Transactions on Consumer Electronics. 2002: 48(3): 796-800.

DOI: 10.1109/tce.2002.1037077

Google Scholar

[4] Uomori, K. Automatic image stabilizing system by full-digital signal processing [J]. IEEE Transactions on Consumer Electronics. 1990: 36(3): 510–519.

DOI: 10.1109/30.103167

Google Scholar

[5] Engelsberg, A., Schmidt, G. A comparative review of digital image stabilising algorithms for mobile video communications [J]. IEEE Transactions on Consumer Electronics. 1999: 45(3): 592-597.

DOI: 10.1109/30.793545

Google Scholar

[6] Ko, S. J., Lee, S. H., K. H. Digital image stabilizing algorithms based on bit-plane matching[J]. IEEE Transactions on Consumer Electronics. 1998: 44(3): 617-622.

DOI: 10.1109/30.713172

Google Scholar

[7] Ko, S. J., Lee, S. H., Jeon, S.W., et al. Fast digital image stabilizer based on gray-coded bit-plane matching [J]. IEEE Transactions on Consumer Electronics. 1999: 45(3): 598-603.

DOI: 10.1109/30.793546

Google Scholar

[8] Chang, J.Y., Hu, W.F., Cheng, M.H. Digital image translation and rotation motion stabilization using optical flow technique [J]. IEEE Transactions on Consumer Electronics. 2002: 48(1): 108-115.

DOI: 10.1109/tce.2002.1010098

Google Scholar

[9] Erturk, S. Digital image stabilization with sub-image phase correlation based global motion estimation [J]. IEEE Transactions on Consumer Electronics. 2003: 49(4): 1320-1325.

DOI: 10.1109/tce.2003.1261235

Google Scholar

[10] Paik, J. K., Park, Y. C., Kim, D.W. An adaptive motion decision system for digital image stabilizer based on edge pattern matching [J]. IEEE Transactions on Consumer Electronics. 1992: 38(3): 607-616.

DOI: 10.1109/30.156744

Google Scholar

[11] Harris, C., Stephens, M. A combined corner and edge detection [C]. Proc. 4th Alvey Vision Conference, Manchester, UK, 1988, 189-192.

Google Scholar

[12] Zhu, J. J., Guo B. L. Electronic image stabilization system based on global feature tracking [J]. Journal of Systems Engineering and Electronics. 2008: 19(2): 228-233.

Google Scholar

[13] Lowe, D. G. Distinctive Image Features from Scale-Invariant Key Points [J]. International Journal of Computer Vision. 2004: 48(3): 91-110.

DOI: 10.1023/b:visi.0000029664.99615.94

Google Scholar

[14] Hsieh, S. P., Kao, C. Hong. A Study of The Feature-Based Digital Image Stabilization System [J]. Journal of the Chinese Institute of Engineers. 2010: 33(4): 635-641.

DOI: 10.1080/02533839.2010.9671651

Google Scholar

[15] Yang, J. L., Schonfeld, D., Mohamed, M. Robust Video Stabilization Based on Particle Filter Tracking of Projected Camera Motion [J]. IEEE Transactions on Circuits and Systems for Video Technology. 2009: 19(7): 945-954.

DOI: 10.1109/tcsvt.2009.2020252

Google Scholar

[16] Shen, Y., Guturu, P., Damarla, T. Video Stabilization Using Principal Component Analysis and Scale Invariant Feature Transform in Particle Filter Framework [J]. IEEE Transactions on Consumer Electronics. 2009: 55(3): 1714-1721.

DOI: 10.1109/tce.2009.5278047

Google Scholar

[17] Yan, K., Sukthankar, R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [C]. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2004 (2) 506-513.

DOI: 10.1109/cvpr.2004.1315206

Google Scholar

[18] Tuytelaars, T., Mikolajczyk, K. Local invariant feature detectors: A survey [J]. Foundations and Trends in Computer Graphics and Vision. 2008: 3(3): 177-280.

DOI: 10.1561/0600000017

Google Scholar