[1]
A. Stepanov, S. Zinchenko, S. Efimov, V. Ordin, M. Filatov, et al. Main trends in the growth of converter steelmaking at the company severstal, Metallurgist, Vol. 49(9/10), 2005, pp.380-2, doi: 10. 1007/s11015-006-0010-0.
DOI: 10.1007/s11015-006-0010-0
Google Scholar
[2]
H. Liu. Application of predicted extrapolation control strategy in hot strip rolling mills gauge system, Proc. World Automat Cong (WAC), Jun, 2012, pp.1-4.
Google Scholar
[3]
H. Wang, Y. Rong, J. Cui, and S. Liu, Study on knowledge processing of fault diagnosis for hydraulic AGC system, 2nd IEEE Intl Conf Infor Man Eng (ICIME), Apr, 2010, pp.1-3, doi: 10. 1109/icime. 2010. 5477802.
DOI: 10.1109/icime.2010.5477802
Google Scholar
[4]
H. Wang, Y. Rong, S. Liu, and J. Cui, Identification for hydraulic AGC system of strip mill based on neural networks, Intl Conf Comput Desgn Appl (ICCDA), Jun, 2010, pp. V2-377-80, doi: 10. 1109/iccda. 2010. 5541406.
DOI: 10.1109/iccda.2010.5541406
Google Scholar
[5]
M. Dong, C. Liu, and G. Li, Robust fault diagnosis based on nonlinear model of hydraulic gauge control system on rolling mill, IEEE Trans Contr Syst Tech, vol. 18(2), 2010, pp.510-5, doi: 10. 1109/tcst. 2009. 2019750.
DOI: 10.1109/tcst.2009.2019750
Google Scholar
[6]
X. Wang, C. Liu, and M. Li, Sensors fault diagnosis of hydraulic automatic gauge control system based on wavelet neural network, IEEE Intl Conf Electr Contr Eng (ICECE), Jun, 2010, pp.3009-12, doi: 10. 1109/iCECE. 2010. 732.
DOI: 10.1109/icece.2010.732
Google Scholar
[7]
X. Wang and K. Zhang, Sensors fault diagnosis of hydraulic automatic gauge control system based on neural network optimized by genetic algorithm, IEEE Intl Conf Oxide Mater Electr Eng (OMEE), Sept, 2012, pp.114-7.
DOI: 10.1109/omee.2012.6343516
Google Scholar
[8]
W. M. Ye, Z. Xu, and K. Deng, The fault and diagnosis for hydraulic system of metallurgical machinery, China High Tech Enterp, Dec, 2008, pp.124-125. (Chinese).
Google Scholar
[9]
P. Garimella and B. Yao, Model based fault detection of an electro-hydraulic cylinder, Proc. Amer Contr Conf, Vol. 1, Jun, 2005, pp.484-9, doi: 10. 1109/acc. 2005. 1469982.
DOI: 10.1109/acc.2005.1469982
Google Scholar
[10]
L. Zhang, C. Zhang, and T. Shi, Inner leakage fault diagnosis of hydraulic cylinder using wavelet energy, Adv Mater Res, vol. 139-141, 2010, pp.2517-21, doi: 10. 4028/www. scientific. net/AMR. 139-141. 2517.
DOI: 10.4028/www.scientific.net/amr.139-141.2517
Google Scholar
[11]
S. Qian and D. Chen, Joint time frequency analysis: methods and applications, Prentice-Hall, (1996).
Google Scholar
[12]
C. M. Bishop, Neural networks for pattern recognition, Clarendon Presss, (1995).
Google Scholar
[13]
H. Chen, Discovery of acoustic emission based biomarker for quantitative assessment of knee joint ageing and degeneration, in computing, engineering and physical science. Ph. D Thesis, Preston: University of Central Lancashire, (2011).
Google Scholar
[14]
C. K. Tan, P. Irving, and D. Mba, A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears, Mech Syst Signal Pr, vol. 21(1), 2007, pp.208-33.
DOI: 10.1016/j.ymssp.2005.09.015
Google Scholar
[15]
ASTM Standard E650/650M, 2012, Standard guide for mounting piezoelectric acoustic emission sensors, ASTM International, West Conshohocken, PA, 2012, doi: 10. 1520/E0650_E0650M-12, www. astm. org.
Google Scholar
[16]
ASTM Standard E1930 / E1930M, 2012, Standard practice for examination of liquid-filled atmospheric and low-pressure metal storage tanks using acoustic emission, ASTM International, West Conshohocken, PA, 2012, doi: 10. 1520/E1930_E1930M-12, www. astm. org.
DOI: 10.1520/e1930_e1930m-17
Google Scholar
[17]
B. Mascaro, J. Prior, L. K. Shark, J. Selfe, P. Cole, et al. Exploratory study of a non-invasive method based on acoustic emission for assessing the dynamic integrity of knee joints, Med Eng Phy, vol. 31(8), 2009, pp.1013-22.
DOI: 10.1016/j.medengphy.2009.06.007
Google Scholar
[18]
L. K. Shark, H. Chen, and J. Goodacre, Discovering differences in acoustic emission between healthy and osteoarthritic knees using a four-phase model of sit-stand-sit movements, J Open Med Infor, vol. 4, 2010, pp.116-25.
DOI: 10.2174/1874431101004010116
Google Scholar
[19]
L. K. Shark, H. Chen, and J. Goodacre, Knee acoustic emission: A clue to joint ageing and failure, Rheumatology, 49, I79, 2010, doi: 10. 1093/rheumatology/keq722.
Google Scholar
[20]
L. K. Shark, H. Chen, and J. Goodacre, Knee acoustic emission: A potential biomarker for quantitative assessment of joint ageing and degeneration, Med Eng Phy, 33(5), 2011, 534-45, doi: 10. 1016/j. medengphy. 2010. 12. 009.
DOI: 10.1016/j.medengphy.2010.12.009
Google Scholar
[21]
H. Chen, Y. Lu, L. Wang, Analysis of dynamic acoustic emission signals using multivariate statistical technique for smaller dataset, J Vibr Meas Diag, 2013, in press (Chinese).
Google Scholar
[22]
I.T. Jolliffe, Principal component analysis, Springer-Verlag, (1986).
Google Scholar
[23]
V. Salinas, Y. Vargas, J. Ruzzante, and L. Gaete, Localization algorithm for acoustic emission, Phys Procedia, vol. 3(1), 2010, pp.863-71.
DOI: 10.1016/j.phpro.2010.01.111
Google Scholar