A Re-Parameterization Transformation of Bézier Curve

Article Preview

Abstract:

A re-parameterization transformation is discussed. With this re-parameterization transformation, a polynomial curve can be reformulated as a rational curve, with a parameterization that is optimal in the sense that no other rational representation of the curve approximates more closely arc-length parameterization. Computing instances are included.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3645-3648

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yi-Jun Yang, Wei Zeng, Cheng-Lei Yang, Bailin Deng, Xiang-Xu Meng, S. Sitharama Iyengar. An algorithm to improve parameterizations of rational Bézier surfaces using rational bilinear reparameterization. Computer-Aided Design 45 , p.628–638, (2013).

DOI: 10.1016/j.cad.2012.10.048

Google Scholar

[2] Fiorot, J.C., Cattiaux, I. Uniform point-distribution on a circle. In: Rabut, C., Le Méhaut é, A., Schumaker, L.L. (Eds. ), Curves in Surfaces with Application in CAGD. Vanderbilt University Press, Nashville, TN, p.103–110, (1997).

Google Scholar

[3] Hernández-Mederos, V., Estrada-Sarlabous, J. Sampling points on regular parametric curves with control of their distribution. Computer Aided Geometric Design 20, 363–382, (2003).

DOI: 10.1016/s0167-8396(03)00079-7

Google Scholar

[4] Jüttler, B. A vegetarian approach to optimal parameterizations. Computer Aided Geometric Design 14, 887–890, (1997).

DOI: 10.1016/s0167-8396(97)00044-7

Google Scholar

[5] Isabelle Cattiaux-Huillard, Gudrun Albrechta, Victoria Hernández-Mederos. Optimal paramete- rization of rational quadratic curves. Computer Aided Geometric Design 26, 725–732, (2009).

DOI: 10.1016/j.cagd.2009.03.008

Google Scholar

[6] Casciola, G., Morigi, S. Reparametrization of NURBS curves. International Journal of Shape Modeling 2, 103–116. Noyes Publications/William Andrew Publising, Norwich, NY (2004).

DOI: 10.1142/s0218654396000075

Google Scholar

[7] Farouki, R.T. Optimal parameterizations. Computer Aided Geometric Design 14, 153-68, (1997).

DOI: 10.1016/s0167-8396(96)00026-x

Google Scholar

[8] Farouki, R.T., Sakkalis, t. Real rational curves are not unit Speed,. Computer Aided Geometric Design 8, 151-157, (1991).

DOI: 10.1016/0167-8396(91)90040-i

Google Scholar

[9] Liang Xikun. Bernstein Bézier Class Curves and a Re-parameterization Method of Bézier Curve. Journal of Computer Research and Development (in Chinese), 41(6): 1016-1021, (2004).

Google Scholar

[10] Paolo Costantini, Rida T. Farouki, Carla Manni, Alessandra Sestini, 2001. Computation of optimal composite re-parameterizations. CAGD 18, pp.875-897, (2001).

DOI: 10.1016/s0167-8396(01)00071-1

Google Scholar