[1]
Schlosser, F. 1982. Behavior and design of soil nailing. Proc. Symp. Recent Development in Ground Improvement Techniques, AIT, Bangkok: 389-397.
Google Scholar
[2]
Bruce, D. A., and Jewell, R. A. 1986. Soil nailing: application and practise-part 1. Ground Engineering. 19: 10-15.
Google Scholar
[3]
Gassler, G. 1990. In-situ techniques of reinforced soil. Proc. Int. Reinforced Soil Conference: 185-196.
Google Scholar
[4]
Zhaoyuan Chen, and Jinghao Cui 1998. Application of Soil Nailing in Foundation Excavation. Chinese Building Industry Publishing House, Beijing. (In Chinese).
Google Scholar
[5]
Ghaboussi, J. 1992. Potential application of neural-biological computational models in geotechnical engineering. Proc. 4th Int. Symp. on Numerical Models in Geomech., Swansea, U. K.: 138-149.
Google Scholar
[6]
Ghaboussi, J., Garrett, J. H. Jr., and Wu, X. 1991. Knowledge-based modeling of material behavior with neural networks. J. Engrg. Mech., ASCE, 117(1): 132-153.
DOI: 10.1061/(asce)0733-9399(1991)117:1(132)
Google Scholar
[7]
Ghaboussi, J and Sidarta, D. E. 1997. New method of material modeling using neural networks. Numerical models in Geomechanics, Pietruszczak & Pande Eds.: 393-400.
Google Scholar
[8]
Goh A.T.C. 1994. Seismic liquefaction potential assessed by neural networks. J. Geotech. Engrg. ASCE, 120(9): 1467-1480.
DOI: 10.1061/(asce)0733-9410(1994)120:9(1467)
Google Scholar
[9]
Goh A.T.C. 1996. Neural-networks modeling of CPT seismic liquefaction data. J. Geotech. Engrg. ASCE, 122(1): 70-73.
DOI: 10.1061/(asce)0733-9410(1996)122:1(70)
Google Scholar
[10]
Goh A.T.C., Wong K.S. and Broms B.B. 1995. Estimation of lateral wall movements in braced excavations using neural networks. Can. Geotech. J., 32: 1059-1064.
DOI: 10.1139/t95-103
Google Scholar
[11]
Chang, W. T., Chow, Y. K., and Liu, L. F. 1995. Neural network: an alternative to pile driving formulas. Comp. and Geotechnics, 17: 135-156.
DOI: 10.1016/0266-352x(95)93866-h
Google Scholar
[12]
Ellis G.W., Yao C. Zhao R. and Penumadu D. 1995. Stress-strain modeling of sands using artificial neural networks. J. Geotech. Engrg. ASCE, 121(5): 429-435.
DOI: 10.1061/(asce)0733-9410(1995)121:5(429)
Google Scholar
[13]
Basheer, I. A., and Najjar, Y. M. 1996. Predicting dynamic response of absorption columns with neural networks. J. Comp. in Civ. Engrg. ASCE, 10(1): 31-39.
Google Scholar
[14]
Teh C.I., Wong K. S. Goh A.T.C. and Jaritngam. 1997. Prediction of pile capacity using neural networks. J. Comp. in Civ. Engrg. ASCE, 11(2): 129-138.
DOI: 10.1061/(asce)0887-3801(1997)11:2(129)
Google Scholar
[15]
Shi J.S., Ortigao J.A.R. and Bai J. 1998. Modular neural networks for predicting settlements during tunneling. J. Geotech. Geoenviron. Engrg. ASCE, 124(5): 389-395.
DOI: 10.1061/(asce)1090-0241(1998)124:5(389)
Google Scholar
[16]
Mathew, A., Kumar, B., Sinha, B. P. and Pedreschi, R. F. 1999. Analysis of masonary panel under biaxial bending using ANNs and CBR. J. Comp. in Civ. Engrg. ASCE, 13(3): 170-177.
DOI: 10.1061/(asce)0887-3801(1999)13:3(170)
Google Scholar
[17]
Rumelhart D.E., Hinton G.E. and Williams R.J. 1986. Learning representation by back-propagation errors. Nature, 323(9): 533-536.
DOI: 10.1038/323533a0
Google Scholar
[18]
Karayiannis, N. B., and Venetsanopoulos, A. N. 1993. Artificial neural networks: learning algorithms, performance evaluation, and applications. Kluwer academic publishers, Boston.
Google Scholar
[19]
Flood, I., and Kartam, N. 1994. Neural networks in civil engineering. I: Principles and understanding. J. Comp. in Civ. Engrg., ASCE, 8(2): 131-148.
DOI: 10.1061/(asce)0887-3801(1994)8:2(131)
Google Scholar